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This document provides a list of supplemental materials
that accompany the main paper.

• Discussion on Scale-Invariant Design - We provide
more detailed discussion for the scale-invariant design
in our system in Section A.

• Derivation of Triangulation Module - We include the
detailed derivation of differentiable triangulation mod-
ule in Section B.

• Details for PoseNet and PoseNet-Flow - We in-
troduce more details and results about PoseNet and
PoseNet-Flow in Section C.

• Additional Results and Discussion for PoseNet-
Flow - We present additional experiemental results for
PoseNet-Flow on visual odometry in Section D.

• Implementation Details - We provide more imple-
mentation details about network architectures and sys-
tem hyperparameters in Section E.

• Additional Comparison on sampled KITTI Odom-
etry dataset - We show more comparsion results about
sampled KITTI Odometry dataset in Section F.

• Numerical Results of TUM-RGBD dataset - We re-
port quantitative results for TUM-RGBD dataset in
Section G.

• Additional Visualizations - In Section H, we provide
additional visualizations generated by our system on
different datasets.

A. Discussion on Scale-Invariant Design
Given a pair of input images, assume that the fundamen-

tal matrix can be accurately recovered from point corre-
spondence and no additional priors exist, the relative trans-
lation of the pair should be up to an arbitrary scale. On
the other hand, the monocular depth estimation aims to use

learned priors from data to directly infer the corresponding
depth image. Assume that the intrinsic parameters of the
camera are known and fixed, the system can possibly make
use of the common priors such as the height of human, the
width of the car as well as subtle structural clues to infer
the monocular depth, which does not suffer from the scale
ambiguity problem.

Most previous works (e.g., [15]) use two separate convo-
lutional neural networks to learn both monocular depth and
relative pose, and directly put photometric consistency con-
straint by using the predicted relative pose to reproject the
predicted depth. This makes the assumption that the scale
of the predicted relative pose should correspond to the pre-
dicted monocular depth, which means that the relative pose
estimation is required to not only learn the feature match-
ing and relative pose recovery, but also implicitly learn the
scale priors which are exactly the same as the monocular
depth estimation is required to learn. This requires the net-
work to firstly infer scale from two input images respec-
tively, and implicitly integrate the predicted scale into the
recovered relative pose, making the learning of pose predic-
tion network extremely hard and degrade its generalization
capability.

Our method explicitly resolves this problem with two
novel designs:

• 1. We use an optical flow network to specifically learn
pixelwise matching, then solve the fundamental matrix
and recover the relative pose up an arbitrary scale.

• 2. We triangulate the predicted correspondence and
explicitly align the predicted depth to the triangulated
point clouds to compute the error map.

In this way, the relative pose prediction is not required to
implicitly learn the scale priors. This significantly improves
the generalization both for training on indoor environments
and inference on video sequences with unseen camera ego-
motion. Note that, the two designs are necessary to be cou-
pled together. Suppose that if the system only employs de-



sign 1 without aligning the depth to the triangulated point
clouds, the joint training cannot converge because it is im-
possible to fit the scale of the depth estimation network to
an arbitrary scale of relative pose.

Based on the previous discussion, we can infer that our
system is robust under the circumstances where the camera
intrinsic parameters are known and fixed. When the camera
intrinsic parameters are flexible across different sequences
on training and inference, only under the assumption that
the monocular depth estimation network can automatically
learn the camera calibration from structural clues in the sin-
gle image can our method still accurately recover the depth
image. Otherwise, further system designs on the monocular
depth network are required to disentangle the influence of
different camera field of view to make the learning problem
feasible.

B. Derivation of Triangulation Module
We adopt mid-point triangulation method to build an up-

to-scale 3D structure from 2D correspondences and rela-
tive pose. Mid-point triangulation problem could be easily
solved with linear algorithms. The objective function is as
follows:

~x� = argmin
~x

’ = argmin
~x

[d(~L1; ~x)]2 + [d(~L2; ~x)]2 (1)

Where ~L1 = {~p = ~c1 + �1~n1 | �1 ∈ R} and ~L2 = {~p =
~c2 + �2~n2 | �2 ∈ R} are two camera rays generated with
optical flow correspondence, and d denotes the euclidean
distance. ~ci = −RT

i
~ti is the ray origin, where [R;~t] is the

camera extrinsic, and ~ni = RT
i K
�1[x0; y0; 1]

T is the ray
direction, where [x0; y0] is the pixel coordinate. The objec-
tive function could be written as:

’(~x; �1; �2) = ‖~c1 + �1~n1 − ~x‖2
+ ‖~c2 + �2~n2 − ~x‖2

(2)
To minimize ’(~x), we need @’

@~x = 0 which easily gives
us:

~x =
(~c1 + �1~n1) + (~c2 + �2~n2)

2
(3)

After substitution of ~x, the cost function becomes:

’(~x; �1; �2) =
1

2
‖(~c1 + �1~n1)− (~c2 + �2~n2)‖2 (4)

Then we have:

@’

@�1
= ~nT

1 (�1~n1 − �2~n2 + ~c1 − ~c2) = 0

@’

@�2
= ~nT

2 (�2~n2 − �1~n1 + ~c2 − ~c1) = 0

(5)

From these two linear equations, the solutions of �1 and �2

could be expressed as:
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Figure 1. Visual odometry results of PoseNet-Flow method on
original sequence 09 and 10.

[
�1

�2

]
= A

[
‖~n1‖2

~nT
1 ~n2

~nT
2 ~n1 ‖~n2‖2

] [
~nT

1 (~c2 − ~c1)
~nT

2 (~c1 − ~c2)

]
(6)

A =
1

‖~n1‖2‖~n2‖2 − (~nT
1 ~n2)2

(7)

The triangulation solution ~x is then computed with Eq. (3).
By this way, the triangulation module is naturally differen-
tiable.

C. Details for PoseNet and PoseNet-Flow
We implement two baseline methods, named PoseNet

and PoseNet-Flow, to compare with our method. PoseNet
system takes image pairs as input, predicts monocular depth
and relative pose by depth and pose branch, respectively.
The depth branch uses the same network as our system
and the pose branch adopts standard PoseNet [4]. Follow-
ing previous PoseNet-based unsupervised depth pose joint
learning methods [15, 1], we utilize photometric loss and
depth reprojection loss to train the network. For PoseNet-
Flow system, we add a flow network to generate optical
flow, and feed generated optical flow, rather than RGB im-
age pair, to PoseNet for relative pose estimation. The flow
network is the same as that of our system. The depth
network and the depth-pose training objectives remain the
same as PoseNet system. We adopt two-stage training strag-
egy for PoseNet-Flow system. In the first stage we train the
optical flow network. Then the flow network is frozen and
both the depth and pose networks are joint trained.

D. Additional Results and Discussion for
PoseNet-Flow

Table ?? shows the depth estimation results of PoseNet
and PoseNet-Flow in indoor NYUv2 dataset. Due to com-
plex camera motions and large textureless regions, tradi-
tional PoseNet method fails to generate plausible predic-
tions. PoseNet-Flow uses optical flow for pose regression,
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Figure 2. Visual odometry results of PoseNet-Flow method on
sampled sequence 09 and 10 with stride 3.

thus improves the interpretability of the system and makes
learning problem easier. This is also discussed in [14]. To
further explore the capacity of PoseNet-Flow system, we
conduct experiments on KITTI Odometry dataset. We use
two consecutive images as training pairs. Figure 1 and
Figure 2 show the results of standard KITTI dataset and
sampled KITTI dataset with stride 3. While the PoseNet-
Flow system could produce feasible results on NYUv2 and
standard KITTI dataset, it still tends to fail on unseen ego-
motions. This could possibly due to the nature of trained
PoseNet that it performs more like image retrieval rather
than solving physical constraints and thus works well only
on the test data which is similar with training samples. On
the contrary, our method works well under all these chal-
lenging scenarios, showing much improved robustness and
generalization ability.

E. Implementation Details
Here we introduce more details about network architec-

tures and training objectives used in our system.
For depth estimation network, we adopt a same encoder-

decoder network with skip connections as proposed in [2].
Specifically, ResNet-18 is used as encoder and DispNet
[5, 3] is used as decoder with ELU nonlinearities for all
conv layers except output layer, where we use sigmoids and
convert the output disparity to depth withD = 1=(ad+b). a
and b are set to be 0.1 and 100 to constrain the range of out-
put depth. We only supervise the largest scale of depth out-
put, and replace the nearest upsampling layers in decoder
with bilinear upsampling, which makes the training more
stable. The depth loss consists of three parts, triangulation
depth loss Ld, reprojection loss Lp and edge-aware depth
smoothness loss Ls. The detailed descriptions of Ld and
Lp are included in the main paper. Given image input It

and disparity prediction dt, depth smooth loss Ls is com-
puted as follows:

Ls = |@xd
n
t | e�j@xItj + |@yd

n
t | e�j@yItj (8)

where dn
t = dt=dt is the normalized disparity prediction to

Image Epipolar Lines

Dense Triangulation Angle Mask

Figure 3. The white area in angle mask means extremely small
angles between two rays or negative triangulation depths. Small
ray angles and negative depths often happen near epipoles, which
are the intersection points of all epipolar lines.

Figure 4. Top to bottom: Image, occlusion mask, inlier map. The
inlier map is converted to binary mask for better visualization. The
occlusion masks and inlier maps could successfully filter out oc-
clusions and non-rigid regions respectively.

avoid depth shrinking, proposed by [9].
For flow estimation network, we adopt the PWCNet [8]

as backbone for predicting forward and backward optical
flow of an image pair. We utilize the backward warping
method proposed in [10] to explicitly handle occlusions.
Generated occlusion masks are not only used as a better su-
pervision for the optical flow, but also for sampling reliable
pixel matches when solving relative pose and triangulation.
Optical flow is predicted and supervised at three different
scales. Following [12, 16], we use a combination of L1
loss, SSIM loss [11] and flow smoothness loss for flow su-
pervision. Therefore, the total flow loss Lf is expressed as:

Lf = (1−�)‖Ia−Ib‖+
�

2
(1−SSIM(Ia; Ib))+�Lfs (9)

where Lfs is the flow smoothness loss which has a similar
formulation as Eq. (8). � and � are set to be 0.85 and 0.1
respectively.

For relative pose estimation, we recover it by solving
fundamental matrix. Specifically, we first compute optical
flow forward-backward distance map Dfb by flow warp-
ing. Then forward-backward score map Ms is generated
as Ms = 1=(0:1 + Dfb). Together, Mo ∗Ms is used for
sampling accurate correspondences from dense flow. We
sample the top 20% correspondences according to score
map and then randomly sample 6k matches. We perform
this sampling strategy, rather than directly top sampling, to
discourage spatial accumulation of sampled matches. Then



Methods Seq. 09 Seq. 10
terr (%) rerr (�=100m) terr (%) rerr (�=100m)

ORB-SLAM2y [6] 11.12 0.33 2.97 0.36
ORB-SLAM2 [6] 2.37 0.40 2.97 0.36
Zhou et al. [15] 24.75 7.79 25.09 11.39
Depth-VO-Feat [13] 20.54 6.33 16.81 7.59
CC [7] 24.49 6.58 19.49 10.13
SC-SfMLearner [1] 33.35 8.21 27.21 14.04
Ours 7.02 0.45 4.94 0.64

Table 1. Visual odometry results on sampled sequence 09 and 10
with stride 2. The average translation and rotation errors are re-
ported. ORB-SLAM2† indicates disablement of loop closure.

Methods Seq. 09 Seq. 10
terr (%) rerr (�=100m) terr (%) rerr (�=100m)

ORB-SLAM2 [6] X X X X
Zhou et al. [15] 61.24 18.32 38.94 19.62
Depth-VO-Feat [13] 42.33 11.88 25.83 11.58
CC [7] 51.45 14.39 34.97 17.09
SC-SfMLearner [1] 59.32 17.91 42.25 21.04
Ours 7.72 1.14 17.30 5.94

Table 2. Visual odometry results on sampled sequence 09 and 10
with stride 4. The average translation and rotation errors are re-
ported.

we run the normalized 8-point algorithm in RANSAC loop
to solve fundamental matrix. The RANSAC inlier thresh-
old and desirable confidence are set to be 0.1 and 0.99 re-
spectively. After solving fundamental matrix, we decom-
pose it into [R; t] and further triangulate matches for all
four [R; t] solutions. We choose the one which has the
most triangulated points in front of both cameras as final
relative pose. An inlier score map Mr is generated from
fundamental matrix to mask out non-rigid regions such as
moving objects and bad matches. See examples in Figure
4. Specifically, we compute the distance from one pixel to
its corresponding epipolar line, resulting in distance map
Depi. The inlier score map is computed as Mr = (Depi <
0:5)=(1:0 + Depi). Again we perform top score sampling
and random sampling from Mr ∗ Ms ∗ Mo to acquire 6k
matches. We filter out the matches which have extremely
small ray angles or have invalid reprojection. To be specific,
given two camera rays ~L1 = {~p = ~c1 + �1~n1 | �1 ∈ R}
and ~L2 = {~p = ~c2 + �2~n2 | �2 ∈ R}, where ~ci is
the ray origin and ~ni is the ray direction, we could have
~v = ~c2 + 〈~c1 − ~c2; ~n2〉~n2 − ~c1. Then the cosine value of
angle between ~v and ~n1 is computed. We filter out the re-
gions where the cosine value is smaller than 0.001. See an
example in Figure 3. After filtering, matches are further tri-
angulated to 3D structure, and then used for scale alignment
and supervision of depth prediction.

F. Additional Comparison on sampled KITTI
Odometry dataset

To better demonstrate the robustness of our system, we
provide additional comparison on sampled KITTI Odom-
etry dataset. The test sequences 09 and 10 are sampled

Figure 5. Visual odometry results on sampled sequence 09 and 10
with stride 2.

Figure 6. Visual odometry results on sampled sequence 09 and 10
with stride 4.

Sequences fr3/cabinet fr2/desk fr3/str ntex far fr3/str tex far
PoseNet 1.45 1.51 0.32 0.38
ORB-SLAM2 [6] X 0.006 X 0.009
Ours 1.09 0.52 0.24 0.14

Table 3. Results for selected sequences on TUM-RGBD dataset.
We report the absolute translational RMSE in meter.

with stride 2 and 4, and we run the PoseNet-based learn-
ing systems and ORB-SLAM2 on these sampled sequences
without additional training. Table 1 and 2 summarize the
results of sampling with stride 2 and 4 respectively. Trajec-
tories results are shown in Figure 5 and 6. Again our system
shows improved robustness and generalization ability com-
pared to our baselines. However, when the camera moves
extremely fast, such as sampling with stride 4 or more, the
optical flow estimation becomes bottleneck and the perfor-
mance degrades due to inaccurate correspondences.

G. Numerical Results of TUM-RGBD dataset
In Table 3, we report the quantitative results of TUM-

RGBD dataset. Our methods could produce reasonable tra-
jectories under challenging scenarios while PoseNet base-
line fails to generalize. ORB-SLAM2 relies on sparse ORB
features to establish correspondences, and it suffers on large
textureless regions (fr3/cabinet, fr3/str ntex far). However,
ORB-SLAM2 works much better than ours when the scene
contains rich textures (fr2/desk, fr3/str tex far). Our system
could be further improved with better optical flow estima-



tion and combination with back-end optimization. TUM-
RGBD and NYUv2 are both indoor datasets and share
some similar data distributions. We trained our method and
PoseNet on TUM-RGBD dataset and directly tested on the
NYUv2 dataset to demonstrate the transfer ability of trained
model. Experimental results show that our model achieves
better transfer performance (AbsRel 0.276) than PoseNet
baseline (AbsRel 0.324). However, this transfer ability is
still limited and has large room for improvement in the fu-
ture.

H. Additional Visualizations
We provide more qualitative results on KITTI and

NYUv2 dataset in Figure 7 and Figure 8.
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Figure 7. Visualization for KITTI depth and flow estimation.




