
Regularizing CNN Transfer Learning with Randomised Regression

Yang Zhong Atsuto Maki
Division of Robotics, Perception and Learning

KTH Royal Institute of Technology
{yzhong, atsuto}@kth.se

1. The scales of the datasets used in the paper
Our paper demonstrates and discusses a ConvNet regu-

larizer which works without extra knowledge or data (un-
like [3, 7, 6, 2]) on several transfer learning tasks for im-
age classification. These tasks cover different scenarios of
transfer learning including fine-grained object classification
and close-set human face identification. They contain more
sparse training samples than some commonly studied trans-
fer learning tasks, e.g. CIFAR [4] and MNIST [5]. The total
number of classes and the number of training sampler per
class of these datasets are compared in Figure 1. It can be
seen that the transfer learning tasks we study in this paper
feature either a few samples per class or many categories
with limited training samples; the total training samples are
fewer than 6000 for the selected datasets except “CelebA-
500” while its average training samples per class is lower
than most of the selected datasets.

Figure 1: The scales of datasets used in our experiments (in
the magenta shadowed area) among other popular transfer
learning benchmarks, e.g. CIFAR10 and MNIST, as well as
the commonly used source datasets such as ImageNet [1]
and CelebA datasets [8]. The average number of per-class
training instances (vertical-axis) and the total number of
classes (horizontal-axis) of each dataset are shown in log10
scale.

2. Timing to bring in PtR
The pseudo regression task is brought into the training

pipeline at a proper stage, and the timing was settled by
considering the training efficiency and model effectiveness.
That is, our pseudo-task branch is enabled to jointly train
the network when the entire network is considered as rela-
tively close to convergence 1.

Figure 2: Validation accuracy (in %) on Flower and Stan-
ford40, according to different timing when PtR joins the net-
work training on the course of model convergence using a
varying threshold, T , for the mean epoch cross-entropy loss
(with SML1 regression).

As shown in Figure 2, we experimented with a varying
mean epoch training loss (T ) on Flower102 and Stanford40
to determine a practical one for efficient training and mod-
els’ effectiveness. It can be observed that PtR improves on
the baseline accuracies (fine-tuning) in all cases and the PtR
at T=1 resulted in a higher accuracy on average. We chose
T=1 as a practical setting in all the rest of experiments since
a larger T does not contribute to the model effectiveness
while negatively prolonging the training time.

3. Standard Deviations of PtR with ResNet
The average classification accuracies (in %) with stan-

dard deviations of the pseudo-task regularization (PtR) with
the ResNet architectures are given in Table 1 to provide
more details for Section 3 in the main manuscript to com-
pare to [2, 6].

1This is different from multiple training stages as in [7] where the ad-
ditional imposed regularizer starts to train the network only after the target
classifier is converged on the target task.

1



Table 1: The ResNet test accuracies, with standard deviations given in parenthesis, on the datasets used in our work.

ResNet-50 ResNet-101
Baseline PtR Baseline PtR

CUB200 80.3% (0.19) 81.9% (0.23) - -
Flower102 91.0% (0.32) 91.8% (0.22) 90.6% (0.17) 91.6% (0.26)

MIT67 77.4% (0.72) 77.9% (0.65) 78.7% (1.10) 77.9% (0.63)
Caltech256-30 - - 84.0% (0.15) 84.5% (0.19)
Caltech256-60 - - 86.8% (0.18) 87.2% (0.07)

4. Impact of weight decay
Weight decay may have some observable impact on the

performance of the fine-tuning baseline, but it can hardly
impact the performance of PtR. We collect all the related
results and show in Table 2 2.

Table 2: Impact of weight decay in fine-tuning (FT) and PtR
(ResNet50). “w/” and “wo/” stands for with default weight
decay settings and without using weight decay respectively.

FT w/ FT wo/ PtR w/ PtR wo/

CUB200 80.3% 81.0% 81.9% 82.0%
Caltech256-30 83.2% 83.2% 83.9% 83.9%
Caltech256-60 86.6% 86.7% 87.1% 87.0%

5. Training from scratch
We have also evaluated the PtR when training models

from scratch as shown in Table 3. Comparing the regular-
ization gain in Table 2 and Table 5 in the main paper, it can
be observed that PtR demonstrates stronger regularization
compared to the scenarios where the ImageNet initializa-
tion was used. It can also be noticed that the gain on the
Caltech256 is consistently smaller than that of the CUB200
in both scenarios. Considering the slightly larger category
on the Caltech256 (see Figure 1), it suggests that training
with more real samples leaves lesser room for PtR to im-
prove regularization.

Table 3: Comparing test accuracy of fine-tuning (FT)
baseline and PtR with ResNet50 on the CUB200 and
Caltech256-30 when training from scratch. The absolute
performace gain in % is listed in the last column for ease of
comparison.

FT PtR Gain

CUB200 57.33% 61.71% 4.38%
Caltech256-30 46.21% 48.25% 2.04%

2All the numerical results in the supplementary document were aver-
aged from five independent runs.

6. Disentangle batch normalization
Batch normalization has been commonly used as a reg-

ularization module in network training. To explore the in-
teraction of its regularization effect with PtR, we applied it
to off-the-shelf VGG-16 models with batch normalization
layers. It is a good candidate for this study is because it fea-
tures a more uniform convolutional-pooling structure that
facilitates disentangling other factors (compared to ResNet
for example) and is sufficiently deep. The comparative re-
sults are shown in Table 4.

Comparing to Table 2 in the main paper, it can be found
that batch normalization improved the baseline for around
1.6%. The use of batch normalization seems to improve
the PtR: together with batch normalization, PtR achieved
an extra 1% regularization gain compared to that in Table 2.

Table 4: Comparing PtR to fine-tuning (FT) on the CUB200
using the ImageNet pre-trained VGG-16 with batch normal-
ization layers.

FT PtR Gain

CUB200 76.70% 80.73% 4.03%

7. Case studies on the effect of the Psudo-task
Regularization (PtR)

We provide ten examples (cf. Section 5 of the paper)
with details as to how PtR impacts the probability predic-
tions in comparison to the corresponding responses from
the baseline networks trained by the standard finetuning.
Specifically, we compare how the predictions of PtR differ
from the baseline in four scenarios:

1. PtR correctly rectifies finetuning’s errors (i.e., true rec-
tification);

2. PtR gives wrong predictions while the predictions by
finetuning were right (i.e., false rectification);

3. Both PtR and finetuning give correct predictions (i.e.,
both correct);



4. Neither PtR nor finetuning gives correct predictions
(i.e., both wrong).

Figure 3, 4, 5, and 6 show the case studies corresponding
to each scenario, respectively. In each of them, input images
following the scenario are shown at the left most, with the
ground truth class labels on the top. Next to those, the raw
probabilities given by PtR and finetuning are displayed in
the grid. The predictions by the two methods are then sorted
according to the magnitude, respectively, and we show the
sorted probabilities which are larger than a small value of
0.5%, which we call major probabilities, in the third grid.
The predicted labels (both by finetuning and PtR) are given
in the legend, and the entropy of each distribution is pro-
vided on top. “Finetuning” and “predictions” are denoted
as “FT” and “Pred”, respectively.

In the right most, four images from the training set are
shown for reference: two of them come from the rank-1
predicted class of PtR and another two images come from
the second predicted class. This allows us, by comparing
those samples and the sorted probabilities, to subjectively
observe how the visual similarities have been valued in the
predictions by PtR more easily.

Throughout the case studies demonstrated in the figures,
an important characteristic of PtR can be found: with PtR
the network tends to identify fewer classes as being similar
to the input class. In particular, many of the minor prob-
abilities (predicted as low values) are eliminated compared
to the original distributions from the finetuning baseline. As
a result, the predictions of PtR are in general less noisy than
those by finetuning. We suspect that noisy predictions by
finetuning are caused by overfitting; our case studies sug-
gest that PtR is capable of alleviating such a problem in a
transfer learning scenario. Besides, PtR often encourages

the predictions of visually similar classes in various scenar-
ios.

As well as the qualitative case studies provided so far,
we also summarize some statistics of our case studies in ad-
dition to Section 5 in the main manuscript. The validation
set of CUB200 contains 584 randomly selected images. The
classification accuracy for finetuning and PtR are 79.8% and
80.8%, respectively. The number of true rectification is 27
and the number of false rectification is 21. PtR and finetun-
ing make correct predictions on a common set of 445 im-
ages and they both make wrong predictions on 91 images.

References
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li.

Imagenet: A large-scale hierarchical image database. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009.

[2] A. Dubey, O. Gupta, P. Guo, R. Raskar, R. Farrell, and
N. Naik. Pairwise confusion for fine-grained visual classifi-
cation. In European Conference on Computer Vision (ECCV),
2018.

[3] W. Ge and Y. Yu. Borrowing treasures from the wealthy:
Deep transfer learning through selective joint fine-tuning. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[4] A. Krizhevsky. Learning multiple layers of features from tiny
images. 2009.

[5] Y. LeCun and C. Cortes. MNIST handwritten digit database.
2010.

[6] X. Li, Y. Grandvalet, and F. Davoine. Explicit inductive bias
for transfer learning with convolutional networks. In Interna-
tional Conference on Machine Learning (ICML), 2018.

[7] Z. Li and D. Hoiem. Learning without forgetting. In European
Conference on Computer Vision (ECCV), 2016.

[8] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. In The IEEE International Conference
on Computer Vision (ICCV), 2015.



(a) PtR gives correct rank-1 class prediction and it is more certain about it than FT is about the misclassified result for the displayed
sample. In addition, PtR also gives a relatively high score on the second prediction which is a class quite similar to the ground
truth (compare patterns on the wings and colors of head of the training examples from Class 36 to Class 189). Only eight predicted
major probabilities (those higher than 0.5%) are made while finetuning generates twice as many; the entropy of PtR turned out to
be less than that of FT.

(b) PtR is quite confident with rank-1 prediction and gives lower but still significant scores to visually similar classes as a result.
Similarly to the example in (a), major prediction scores are given to only three classes by PtR whereas FT picks two more classes.
The entropy of PtR is also lower than that of FT.

(c) PtR gives the highest prediction score to the input image (among all of the three examples in this True Rectification scenario)
and the prediction scores on other classes are quite marginal. But it can also be seen that PtR still tends to identify fewer similar
classes given that only eight other classes receive a score around 1% while finetuning selects ten more classes.

Figure 3: Examples of True Rectifications.



(a) This is a hard positive example to finetuning on which PtR makes an error. From the predictions (see the 3rd grid), it can be seen
that both methods identify the similar classes — Class 37, 39, and 43; FT generates a slightly higher score on the correct class. PtR
again focuses on only four classes and the entropy of the prediction scores is slightly lower.

(b) PtR gives more confidence than FT does for the top-2 predictions and it consequently assigns lower scores on other similar
categories. The number of major predictions are fewer than that of FT. In this way, it can focus on a few similar classes and
generates predictions with a lower entropy.

(c) Although PtR gives high confidence on a similar but wrong class, it still identifies the correct class in the rank-2 prediction. The
number of major predictions are slightly fewer than that of FT and they are less noisy as indicated by the lower entropy.

Figure 4: Examples of False Rectifications.



(a) Another hard positive example for FT. It can be seen that the predictions made by PtR are more discriminative than those by FT,
but at the same time PtR can still correctly identify the visually correlated Class 103. The number of major predictions of PtR is
fewer than that of FT; the entropy of the PtR’s prediction is also lower than FT.

(b) Although PtR still correctly identifies the object, the close scores (of rank-1 and rank-2 predictions) suggest that it also suspects
the rank-2 predicted class. This means that the model trained by PtR has focused mostly on the first two predicted classes. The
predictions of PtR are slightly noisier than FT, but the number of major probabilities is one fewer than that of FT.

Figure 5: Examples of Correct Predictions by Both Methods.

(a) Both FT and PtR make correct predictions at the second rank. PtR still predicts fewer minor probability and makes less noisy
predictions than FT.

(b) Although both rank-1 predictions are wrong, PtR correctly identifies the right class at the rank-2 prediction. As PtR gives
confidence in its rank-1 prediction, the rest of the identified classes receive lower scores. PtR in this case still produces fewer minor
probabilities than FT.

Figure 6: Examples of Wrong Predictions by Both Methods.


