
DeepStrip: High Resolution Boundary Refinement (Supplementary Material)

A. Appendix
A.1. Baseline Details

In Section 4 of the paper, we compare our method to
prior approaches. Here we give specific details on how we
applied each prior work.
• Bilinear Upsampling: Directly bilinearly upsampling
the low resolution mask to high resolution. The hard mask
is obtained by the optimal threshold the from soft mask and
the boundary is obtained by taking the gradient of the up-
sampled hard mask.
• Grabcut [7]: We apply grabcut given the upsampled low
resolution, and use the boundary mask for evaluation.
• Dense CRF [5]: A non-learning approach based on con-
ditional random field of the nearby pixels. Given the up-
sampled mask and High Resolution (HR) image, we apply
dense CRF to refine the mask. The boundary mask is ob-
tained from the gradient of the predicted mask.
• Bilateral Solver [2]: A edge-aware smoothing algorithm
with fast and robust optimization. We use the publicly re-
leased code for evaluation. We provide the upsampled mask
as the reference image. The hard mask is obtained by the
optimal threshold from the soft mask.
• JBU [4]: A Joint Bilateral Upsampling (JBU) algorithm
which upsamples the source image taking into account the
reference image jointly. We use the contributed opencv
function for evaluation. We take the Low Resolution (LR)
image as the source image and jointly upsample to obtain
the output. The hard mask is obtained by the optimal thresh-
old from the soft mask.
• Deep GF [9]: A learnable guided filtering approach that
performs pixel-wise image prediction. We use the released
code for evaluation 1 and we use radius 1 for testing.
• Guided Filtering [3]: The original guided filter ap-
proach. We use the built-in opencv function for evaluation.
• Curve-GCN [6]: A GCN based approach which aims
to predict the control points of the contour and fit curve to
obtain the final boundary. Instead of random initialization,
we provide the upsampled contours as initialization to train
the network. The input size is 512× 512 and HR prediction
is made by upsampling from LR prediction as the whole
boundary region is required for prediction.

1https://github.com/wuhuikai/DeepGuidedFilter

• DELSE [8]: A level-set based approach with extreme
points as initialization. We use the released code for eval-
uation. Since a ground truth hi-res mask is not available
at inference time, instead of extracting extreme points from
ground truth mask, we use the upsampled LR mask to ex-
tract extreme points for evaluation. The input dimension is
1024 × 1024 and predictions on PixaHR are made in low
resolution and upsampled to original resolution. We report
the optimal threshold for evaluation. The original DELSE
setting with ground truth extreme points is also shown in
Table 1.
• STEAL [1]: A semantic boundary refinement approach
which adds a thinning layer and active alignment to refine
boundaries from coarse to fine. We use the public released
code and model 2 and we follow the default patch-by-patch
testing with patch size 512 for evaluation.
• U-Net Boundary: Since it is difficult to implement in the
whole image the boundary distance and C0 continuity loss,
which are applied in strip domain, we only apply common
edge detection loss as in [10]. As a result, the predicted
boundaries are thick with high recall and low precision in
Boundary-based F score. (See results in Figure 4 and Fig-
ure 3)

A.2. Additional Ablation Analysis

We provide additional ablation results in Table 1. To de-
termine the width of the strip, besides multiplying the pixel
number in LR mask with the scale factor, we slightly in-
crease the width further by a factor from 1 to 2. Compar-
ing among Ours 1, Ours 1.5 and Ours 2, the performance
changes by a small margin under different factors. We re-
port Ours 1.5 in the main result as a trade off between per-
formance and computation. Additionally, since our strip
reconstruction step uses image gradient as part of energy
function, we conduct experiment which only uses image
gradient to find the minimum path in the strip reconstruc-
tion step. As shown in Table 1, the performance degrades
by a large margin if we only use gradient (Strip + gradient)
because spurious boundaries will be included, indicating the
effectiveness of our learning based approach.

2https://github.com/nv-tlabs/STEAL
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Dataset DAVIS 2016 PixaHR 16×

Metrics F (0 pix) F (1 pix)

DELSE original 0.275 0.082
Strip + gradient 0.165 0.295
Our 1 0.414 0.392
Our 2 0.416 0.415
Ours 1.5 0.423 0.396

Table 1. Ablation analysis on two datasets. Each entry is the
boundary-based F score tested on individual dataset.

Figure 1. Less accurate examples from COCO.

A.3. Qualitative Results of Loss Function

Figure 2 compares the results with different losses. With
only weighted l1 and dice loss, spurious boundaries are not
suppressed and thus false positive exists. With the introduc-
tion of selection layer, the network select target boundaries
from all potential ones so that spurious boundaries get ig-
nored. Additionally, a closer prediction is observed with
boundary distance loss. Lastly, with the introduction of C0
continuity and matching loss, a better result is obtained.

A.4. Additional Qualitative results

Figure 3 and Figure 4 show the results among baselines
in multiple regions. It is clear that our method achieves
more accurate results than the baselines. In particular, our
approach have smoother boundaries than U-Net boundary
and less false positive than DELSE and bilateral solver.
More visualization examples are displayed in Figure 5, Fig-
ure 6 and Figure 7. Less accurate initial mask results on
COCO is shown in Figure 1.
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Figure 2. Visualization of loss components. Rows from top to bottom are original images, U-Net strip + dice which use weighted l1 and
dice loss, U-Net strip + dice + selection, U-Net strip + dice + selection + SD, Ours and Ground truth.



Figure 3. Multi-region visualization on DAVIS 2016. The first column shows the whole image and the rest columns are the enlarged box
regions. Boundaries are highlighted in white. Notice that our approach has closer prediction than methods like bilinear upsampling and
guided filter, has less spurious boundaries than DELSE and bilateral solver, and thinner boundaries than U-Net Boundary.



Figure 4. Multi-region visualization on PixaHR. The first column shows the whole image and the rest columns are the enlarged box regions.
Boundaries are highlighted in white. Notice that our approach has closer prediction than methods like bilinear upsampling and guided filter,
has less spurious boundaries than DELSE and bilateral solver, and thinner boundaries than U-Net Boundary.



Figure 5. Additional visualization on DAVIS 2016. We first show the whole boundary visualization and then show the enlarged box region.
The boundaries in the enlarged regions are displayed in white. Notice that for complicated topology, our approach still has better result
than the baselines.



Figure 6. Additional visualization on PixaHR 32×. We first show the whole boundary visualization and then show the enlarged box region.
The boundaries in the enlarged regions are displayed in white. Notice that our approach makes smoother prediction than dense CRF and
less false positive than DELSE.



Figure 7. Additional visualization on PixaHR 16×. We first show the whole boundary visualization and then show the enlarged box region.
The boundaries in the enlarged regions are displayed in white. Notice that our approach makes smoother prediction than dense CRF and
less false positive than DELSE.


