
Private-kNN: Practical Differential Privacy for Computer Vision
Supplementary Material

Yuqing Zhu1,2 Xiang Yu2 Manmohan Chandraker2,3 Yu-Xiang Wang1

1University of California, Santa Barbara
2NEC Labs America

3University of California, San Diego

In this supplementary, we provide the proofs of Theorem
7 and Theorem 8. Moreover, we present a discussion of
utility and privacy trade-off in Market1501 dataset. Later,
we describe the τ -approximation approach to reduce the
global sensitivity in multi-label tasks.

A. Proofs of Theorem 7 and 8 in the paper
Theorem 1 (RDP of “Noisy Screening”, Restatement of
Theorem 7). LetMs be a randomized algorithm for noisy
screening procedure with a predefined Gaussian noise scale
σ1 and the threshold T . ThenMs obeys RDP with

εMs(α) = max
(p,q)∈S

1

α− 1
log (pαq1−α + (1− p)α(1− q)1−α).

where S contains the following “pairs”:(
P[N (t, σ2

1) ≥ T ],P[N (t+ 1, σ2
1)] ≥ T ]

)
,(

P[N (t, σ2
1) ≥ T ],P[N (t− 1, σ2

1)] ≥ T ]
)

for all integer dk/ce ≤ t ≤ k. The bound can be computed
in time time O(k).

Proof. For a given query x, set n∗(x) be the vote count
of the plurality and p, q denote the probability of x passes
the noisy screening procedure with neighboring private
datasets X,X ′ respectively. The output space of both
Ms(X) andMs(X

′) is {>,⊥}, where> indicates x passes
noisy screening process, and vice versa. ThenMs(X) and
Ms(X

′) satisfy the Bernoulli distribution with the parame-
ter p, q respectively.

By definition of Renyi Differential privacy and the Renyi
Divergence of two Bernoulli distributions:

εM(α) = sup
X,X′are neighbors

1

α− 1
logEq(

p

q
)α

= sup
X,X′are neighbors

1

α− 1
log (pαq1−α + (1− p)α(1− q)1−α)

The key of deriving RDP is to maximize over the two neigh-
boring datasets. We make two observations. First, the notion
of datasetsX,X ′ are completely captured by their max votes
t, t′. By the fact that the two datasets differ by at most one

individual, |t−t′| ≤ 1. In other word, to enumerate all neigh-
boring datasets, it suffices to consider integer t, t′ from dk/ce
to k such that t′ ∈ {t−1, t+1}. Second, p, q can be directly
calculated from t and t′ respectively: p = 1− cdf(T−tσ ) and
q = 1 − cdf(T−t

′

σ1 ). Where cdf denotes the CDF of a stan-
dard normal random variable. Note that p monotonically
increases as t increases.

These two observations ensure that we can calculate the
RDP εM(α) for any fixed α in time O(k).

Where is t∗ in practice? In practice, the worst pair of
neighboring datasets occur either around max{votes} = T
or around the boundaries when max{votes} = k (the largest
possible) or max{votes} = dk/ce (the smallest possible due
to pigeon hole principle).

In Figure 1, we plot the data-independent RDP of “Noisy
screening” of all possible plurality. The plurality n∗ ranges
from dk/ce to k and we set k = 300, threshold T =
210, σ1 = 85. The x-axis is the RDP order α ranges from
1 to 50, the y-axis is the range of possible n∗, and we plot
the corresponding RDP ε(α) with the fixed α, n∗. The red
curve shows the ε(α) when max{votes} = T , and we plot
the red-dash line to view its exact RDP value more clearly.
This figure shows that when α is small (below 50), the worst
case of data-independent RDP is when max{votes} = T .
In Figure 2, we pick 5 curves from Figure 1 to further com-
pare the RDP under the different choices of n∗. It shows
that when α ≤ 80, the maximum data-independent ε(α) is
achieved when n∗ ≈ T , and when α ≥ 80 the ε(α) is max-
imized when n∗ = k. So for the upper bound of RDP of
noisy screening, we only need to evaluateMs for several
neighboring datasets. In Figure 3, we plot the privacy cost
of answering 8192 queries with 5 different data-independent
analysis (from Figure 2 in the noisy screening procedure.
The red line shows the privacy cost when n∗ = T , and it’s
on the top the five curves which verifies our conjecture: the
worst-case appears around n∗ = T or n∗ = k. In the first
10 iterations, n∗ = k achieves the maximum. From Lemma
3, we know ε = minα ε(α) + log 1/δ

α−1 . When the number of
iteration is small, the total privacy cost ε is minimized when
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Figure 1. Searching the worst case for data-independent RDP of
“Noisy Screening”.
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Figure 2. An example for data-independent RDP of “ Noisy Screen-
ing” with different plurality.

α is large. As the number of iterations keeps increasing, ε
is minimized when α is small. This phenomenon explains
that the maximum data-independent privacy cost could be
caused by several choices of n∗, which maximizes ε(α) in
the different range of α. However, εM(α) is not always
maximized when max votes = korT . For a larger α,the max
εM(α) is attained when n∗ = k. Check these two cases can
give us a fast approximation of εM(α).

Theorem 2 (Asymptotic scaling, formal version of The-
orem 8). Assume parameter γ, σ1, σ2, δ are chosen such
that γ < 0.1, σ1 ≥

√
5, σ2 ≥ 2

√
5, and moreover

4 log(1/δ)σ2
1

γ2
(

min{σ2
1 ,σ

2
2} log2(1/γ)−2

) ≤ m ≤ σ2
1 log(1/δ)

3γ2 , mselect ≤

σ2
2 log(1/δ)

6γ2 . Then, the end-to-end Private-KNN algorithm
that processes all m public data points using with noise

0 2000 4000 6000 8000
Number of Queries

10 3

10 2

10 1

100

 
 o

ve
r Q

ue
rie

s

Maximize Data-independent RDP by Searching the Max  of Parameter n *

n * = 30
n * = 100
n * = 150
n * = 210
n * = 300

Figure 3. Privacy cost of answering 8192 queries with different
data-independent RDP of “Noisy Screening”. The sampling ratio
γ = 0, 25, σ1 = 85, k = 300. n∗ is the fixed max votes.

σ1, σ2 and sampling ratio γ obeys (ε, δ)-DP, with

ε = 20γ
√

log(1/δ)(

√
m

σ1
+

√
mselected

σ2
).

Proof. The algorithm that process all m data points is an
adaptive composition of two steps. In the first step, we
release the {>,⊥} with the “noisy screening”. In the second
step, we release the “noisy max” for those that passes the
screening rule. In both steps, the randomized procedure is
amplified by Poisson subsampling. As a result, both has
an RDP that is upper-bounded by the Poisson subsampled-
gaussian mechanism.

The following is an asymptotic scaling of the the subsam-
pled Gaussian mechanism.

Lemma 3 (Theorem 11 of [1]). Let the global `2 sensitivity
be ∆. Assume γ ≤ 0.1, σ/∆ ≥

√
5, then the Poisson-

subsampled Gaussian mechanism obeys (α, 6γ2∆2

σ2 )-RDP

for all α ≤ σ2 log(1/γ)
2 .

The above lemma is implied by the original statement
about tCDP [1] for randomly selecting a subset of a fixed
size γn, because (1) tCDP is an upper bound of RDP; (2) the
exact RDP calculation for the Poisson-subsampled Gaussian
mechanism matches the RDP lower bound of the (Random
subset) subsampled Gaussian mechanism [6, Proposition
10].

The global sensitivity of the Gaussian mechanism in the
“noisy screening” step is 1 because we are releasing only
max{Votes}, while it is 2 in the Gaussian mechanism for
releasing the Votes — the histogram. Check that the stated
assumptions on γ, σ1, σ2 satisfy the conditions above.

By the composition rule of Renyi Differential Privacy
in Lemma 5 which establish that the end-to-end algorithm



obeys RDP with

ε(α) ≤ 6γ2mα

σ2
1

+
12γ2mselectα

σ2
2

.

for all α in the range that are permitted by Lemma 3.
Finally, by Lemma 3 in main submission, we can convert

RDP to (ε, δ)-DP with

ε = α
(6γ2m

σ2
1

+
12γ2mselect

σ2
2

)
+

log(1/δ)

α− 1
.

Choose α = 1 +

√
log(1/δ)√

6γ2m

σ21
+

12γ2mselect
σ22

we get that:

ε =
6γ2m

σ2
1

+
12γ2mselect

σ2
2

+ 2γ

√
log(

1

δ
)
(6m

σ2
1

+
12mselect

σ2
2

)
.

The proof is complete by checking that under our assumption
m, the second term always dominates and the assumption
on α in Lemma 3 no matter that mselect turns out to be.

B. The utility and privacy trade-off on Mar-
ket1501 dataset

Figure 4 shows the utility and privacy trade-off of PATE
and ours by varying sampling ratio γ, the noisy scale σ1

and the number of queries. For GNMAX in PATE, to push
the accuracy from 86.80% to 86.90%, we need to increase
the privacy budget from 13.41 to 43.14. In the low privacy
cost regime, our method achieves accuracy 87.82% with
privacy budget 0.2416. In the high privacy cost regime,
our algorithm achieves 89.18% with ε = 1.72 compared
to ε = 5.298 and accuracy =86.21% in PATE. Further by
checking the same accuracy, i.e., 86.5% for both “GNMAX”
and ours with γ = 0.05, our privacy cost is 0.116 while
“GNMAX” is 6.62. Indeed, more than 90% privacy budget
is saved from the baseline method.

Privacy and utility trade-off of GNMAX In all experi-
ments of GNMAX, we set the number of teachers with re-
spect to the performance of each teacher. For example, if we
set the number of teachers to be 600, then the average non-
private accuracy of each teacher is around 76%. Since every
partitioned data should not be overlapped with each other
regard to the identity, the total identity is 750, and T = 600
is the maximum number GNMAX algorithm can afford. If
we set a small T for GNMAX, e.x. T = 100, σ1 = 40, then
the privacy loss of GNMAX achieves ε = 13.22 even it only
answers 80 queries.

C. Applying Private-kNN to multi-label classi-
fication tasks

So far, we have been primarily working with multi-class
classification tasks where the global sensitivity of the vot-
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Figure 4. Trade-off between utility and privacy for PATE and ours
on Market1501 dataset.

ing results of the nearest neighbors are naturally bounded.
But for multi-label tasks, this is no longer true. Potentially,
for a problem with c-labels, any neighbor can potentially
vote on all c-labels, which makes the naı̈ve noisy-adding
mechanisms inefficient. We propose to fix it by a “clipping”
heuristic that limits contribution of every label to at most τ .

Definition 4. (τ approximation) For a traditional classifi-
cation task, the global sensitivity of our model in the noisy
aggregation process is 2 from Theorem 9. However, consider
the more general multi-label task in vision, e.x. Facial at-
tribute classification task, where one face image could have
at most 40 attributes and the global sensitivity will increase to
80. To limit the global sensitivity in the multi-label task, we
introduce the τ -approximation method, where the basic idea
is that each neighbor could vote no more than τ attributes.
For simplicity’s sake, we only consider binary multi-label
tasks here. In a multi-label task, the vote of neighbor j upon
query x is fj(x) ∈ N c now becomes a c−way vector. To
impose τ approximation on it, we apply

f̂j,i = fj,i ·min(
τ

|fj(x)|
, 1), i ∈ [1, c],

with |fj(x)| the L1 norm of original neighbor j’s voting and
f̂j the neighbor j’ prediction upon x with τ approximation.

Theorem 5 below provides a practical privacy bound to
guide the analysis for multi-label classification task.

Theorem 5. LetMτ be a randomized algorithm for a multi-
label task with τ -approximation method, the global sensitiv-
ity of f(x) here is 2 · τ , then we have for integer α ≥ 2,

Dα(Mτ (X)||Mτ (X ′)) =
α · τ
σ2

1

Regression problems. Similar clipping tricks can be ap-
plied to regression problems so private-kNN applies. We can



also use median, rather than the mean. Careful experimental
evaluation on regression problems are left as a future work.

D. Architecture of networks
We plot the network architecture of MNIST in Table 1.

The MNIST model contains two convolutional layers with
max-pooling and two fully connected layers with ReLUs.
For the SVHN task, Table 2 shows that the SVHN model
stacks seven convolutional layers with two fully connected
layers, which replicates the experimental setup as in [5].
The source code of MNIST and SVHN experiments and a
Pytorch implementation of [5] are available on Github.1

Table 1. Network architecture of MNIST task
Conv 64 filters of size 5× 5

Max pool 2× 2
Conv 128 filters of size 5× 5

Max pool 2× 2
FC (384, 192, 10)

Table 2. Network architecture of SVHN task
Conv 96 filters of size 3× 3

Conv 96 filters of size 3× 3
Conv 96 filters of size 3× 3
Conv 192 filters of size 3× 3
Conv 192 filters of size 3× 3
Conv 192 filters of size 3× 3
Conv 192 filters of size 5× 5
FC (192, 192, 10)

E. More discussion about data-dependent
noisy-screening

Noisy-Screening vs. Sparse Vector Technique. The
noisy screening is closely related to the Sparse Vector Tech-
nique [2, 3] (SVT) that screens a sequence of online queries
f1, f2, ... with global sensitivity 1 and output {>,⊥} with
the hope of approximately selecting those queries with value
greater than a threshold T and essentially paying only the
privacy loss for those that are selected.

The key steps of an SVT include adding Laplace noise to
the threshold and also adding Laplace noise to fi(x) when
deciding whether to output > or ⊥. When the large majority
of the queries have either > or ⊥ with sufficiently high
margin from the threshold T , then SVT is able to handle an
exponentially large set of queries.

“Noisy-screening” is different in two ways. First, it
does not aim at “calibrating noise to stability” to achieve
a pre-defined privacy budget. Instead the version that we

1https://github.com/jeremy43/Private_kNN

used pays the same amount for every query. Second, we
can use Gaussian mechanism on fi(x) while keeping the
threshold T unchanged. This method at a glance does not
resemble SVT at all because it does not adapt to the in-
put sequence, and pay only an amount proportional to the√

min{# of ⊥,# of >} as in SVT.

That said, the data-dependent RDP of “Noisy-screening”
is in fact a lot more closely related to SVT. If a query fi
obeys that either fi(x) � T or fi(x) � T , then the data-
dependent RDP is going to be exponentially smaller than
that is coming from the Gaussian mechanism. Directly com-
posing the data-dependent RDP will lead to qualitatively the
same behavior as SVT.

For example, for a sequence of queries where SVT can an-
swer exponentially many without using up a budget of (ε, δ),
we can answer the same sequence with “noisy-screening”
while paying a “data-dependent” privacy loss that is likely
to be smaller than (ε, δ).

Consider another example, if the sequence of queries are
close to fi(x) = T , then the data-dependent calculations
for “noisy screening” will arrive at about the same privacy
losses as the data-independent counterpart. Similarly, SVT
will also stop within just a few rounds because essentially it
pays every other iteration on average.

In summary, the data-dependent RDP calculations of
“noisy screening” can be thought of as a versatile alternative
of SVT, when satisfying a fixed pre-specified privacy budget
is not too important and when we do not have to reveal the
final privacy loss that is realized (because its value depends
on the data). This allows us to use a more concentrated Gaus-
sian noise, and to take advantage of the RDP for a tighter
composition.

Both limitations can be resolved by privately releasing
the data-dependent RDP using smooth sensitivity [4] as in
what was proposed in the appendix of [5]. Details of this
procedure and how “noisy screening” compares to SVT in
general is left as a future direction of research.

Open problem: Data-dependent RDP of subsampled
mechanism. Privacy-amplification by subsampling is not
compatible with data-dependent RDP because implicitly, the
amplification is coming from the fact that for any subset that
is selected, the same RDP bound holds.

A trap is to amplify the data-dependent RDP calculated
through the specific sample that is chosen. This is because
value probably cannot hold for other subsets.

It remains an open problem how to correctly calculate
the data-dependent RDP for a subsampled mechanism. The
exact calculation would require enumerating over all subsets
and calculating their corresponding data-dependent RDP.

https://github.com/jeremy43/Private_kNN
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