Supplementary material for Semantically Multi-modal Image Synthesis

1. Implementation details

Network architectures. In this section, we give detailed
network designs for each dataset. We demonstrate the archi-
tecture of the discriminator in Fig. 1. Note the architecture
of the discriminator holds the same for different datasets. In
Fig. 2, we demonstrate the encoder architecture for differ-
ent datasets. Fig. 3 depicts the architectures of the decoders
for the DeepFashion and Cityscapes, while Fig. 4 shows the
architecture of the decoder for ADE20K. Since ADE20K
has so many classes, we bring down the channel number for
each group to avoid massive GPU usage. In this case, the
overall network capacity decreases, and we assume it’s not
helpful to the results. Therefore, we add some additional
convolutional layers to enlarge the network capacity; thus,
this makes the architecture of the decoder for ADE20K is
different from those of the other two datasets.

Training details. We train all experiments on DeepFash-
ion for 100 epochs, where in the first 60 epochs, the learn-
ing rates for both the generator and discriminator maintain
the same while linearly decay to O in the last 40 epochs.
For Cityscapes and ADE20K datasets, we follow the train-
ing settings of SPADE [7] to train 200 epochs, where the
learning rates linearly decay to O from 100 to 200 epochs.
The image sizes are 256 x 256, except the Cityscapes at
512 x 256. The batch size for DeepFashion and Cityscapes
is 32 while 16 for ADE20K due to the large number of chan-
nels to meet the requirements of sufficient capacity for the
150 classes. The network weights are initialized with Glo-
rot initialization [2] following SPADE [7].

Group number selection strategy. Actually, it is hard to
devise a programmatic strategy to decide the decreasing
numbers, under restrictions of the capacity of GPU mem-
ory, batch size, and the number of parameters efc. However,
we still followed two rules to design the group numbers: 1)
the numbers decrease drastically in the first several layers
of the decoder to largely reduce the computational cost; 2)
the group number in the previous layer is either equal or 2
times of that in the next layer.

2. Datasets

DeepFashion [5]. DeepFashion (In-shop Clothes Retrieval
Benchmark) contains of 52,712 person images with fashion
clothes. We select about 29,000 training and 2,500 vali-
dation images. After that, we use an off-the-shelf human
parser [3] pre-trained on the LIP dataset [4] to get segmen-
tation maps. Specifically, given an input image, we first get
its segmentation map, then re-organize the map into eight
categories: hair, face, skin (including hands and legs), top-
clothes, bottom-clothes, socks, shoes, and background. At
the same time, we filter out the images with some rare at-
tributes like a glove, and so on. We choose DeepFashion
because this dataset shows lots of diversities of all semantic
classes, which is naturally suitable for assessing the model’s
ability to conduct multi-modal synthesis.

Cityscapes [1]. Cityscapes dataset [1] has 3,000 training
images and 500 validation images, collected from German
cities. The size of the images in Cityscapes are quite large,
so it is proper to test the model’s ability to produce high-
resolution images on this dataset.

ADE20K [9]. ADE20K dataset [9] contains 20,210 train-
ing and 2000 validation images. This dataset is extremely
challenging for many tasks because it contains up to 150
semantic classes. ADE20K is extremely challenging for its
massive number of classes, and we find it hard to train Mul-
Net and GroupNet on ADE20K with our limited GPUs.

3. Additional results

In Fig 5, we show more ablation qualitative results on
DeepFashion. The conclusions are basically the same as
we put in the main submission. One thing to note is
that compared to MulNet, GroupNet, and GroupEnc, our
GroupDNet has better color, style, and illumination con-
sistencies due to its design consideration for carving the
correlation among different classes. Likewise, GroupDec
and VSAPDE seem to have the ability to consider class
correlations just as GroupDNet, because the regular con-
volutions in their decoders help to discover the relation-
ships. But they instead lose strong SMIS controllability, un-
like GroupDNet. These results firmly verify the efficacy of
GroupDNet and show its balanced trade-off between SMIS



Models FID] | mCSDT | mOCDJ | LPIPST | SHET | FPS T | # Paral
GroupDNet | 9.50 | 0.0264 | 0.0033 | 0.228 | 812 | 122 | 109.1
wilo map 11.01 | 0.0253 | 0.0036 | 0217 | 795 | 115 | 1093
wio split 1076 | 0.0054 | 0.0189 | 0216 | 317 | 12.1 | 109.1
—GroupNorm | 1033 | 0.0256 | 0.0040 | 0225 | 77.0 | 122 | 109.1
wio SyncBN | 9.76 | 0.0251 | 00037 | 0216 | 793 | 123 | 109.1
wio SpecNorm | 10.42 | 0.0290 | 0.0153 | 0.231 | 463 | 13.5 | 109.0
Table 1. Quantitative results of the ablation experiments on the

DeepFashion dataset.

controllability and image quality.

In Fig 6, Fig 7 and Fig 8, we show additional compari-
son results from the proposed method on the DeepFashion,
Cityscapes and ADE20K datasets with pix2pixHD [8] and
SPADE [7]. These results show that the image quality of
GroupDNet is slightly better than the other two methods,
especially in terms of keeping the object structures ordered
and regular in the Cityscapes dataset (See the buildings and
cars in these pictures).

In the accompanying video attached to our code base',
we demonstrate more results of our model on all datasets.
Besides, we give a more straightforward demonstration of
our exemplary applications. The video shows more re-
sults and detailed instructions of our exemplary applica-
tions in the main submission. From these videos, we exhibit
the SMIS performance of GroupDNet on all three datasets
and the potential applications of models designed for SMIS
task. However, our model trained on the Cityscapes dataset
seems to lose semantic controllability. For example, when
altering the latent code for the buildings, other parts follow
to change with the buildings. We are not willing to regard
this phenomenon as a significant flaw. In some cases, we
do hope the whole image can change alongside the change
of a class-specific latent code because it strengthens the fi-
delity of the generated images. For example, the discor-
dance between the overall illumination and illuminations on
some objects could make the image unrealistic and unnatu-
ral. Another problem is the diversity of the generated results
on Cityscapes seems quite limited. It is because this dataset
is restricted initially to the scenes of German cities. More-
over, the images inside the dataset were shot during short
intervals; hence, they exhibit no diversity of illumination
from daylight to darkness. Seeing these results, we firmly
believe semantically multi-modal image synthesis has more
applications and intrinsic scientific values that deserve to
explore given suitable datasets. In the future, we’ll inves-
tigate more into GroupDNet and try to improve its perfor-
mance in SMIS.

4. Additional ablation study

To support for the SMIS task and improve the quality of
generated images, we made several minor modifications to
GroupDNet, including: 1) splitting the original input image

lhttps://qithub.com/Seanseattle/SMIS

to different images of different semantic classes, as men-
tioned in our main text; 2) enforcing the encoder to produce
a mean map and variance map rather than a mean vector
and variance vector that are used in SPADE. To validate the
effects of these strategies, we conduct ablation experiments
by not using them in the networks, thus we have the re-
sults of the model without splitting the original images (w/o
split) and the model without producing a mean and variance
map (w/o map). Note for the latter one, we use add global
average pooling at the last of the encoder to compress maps
into vectors, instead of using the routine fully connected
layers to produce the vectors, which could cripple the indi-
viduality of each class. Results shown in Tab. 1 indicates:
splitting the input image or producing a mean and variance
map are necessary strategies for the SMIS task, otherwise
the model will suffer from a degraded performance of FID,
mCSD and mOCD.

Besides, considering the vast use of group convolution
in GroupDNet, it is very interesting to know what the effect
would be if we apply group normalization as the main nor-
malization layer in our model because group normalization
also operates separately on different groups of feature chan-
nels. Therefore, we conduct another experiment by chang-
ing all normalization layers in our original model to group
normalization layers and set their group numbers equal to
their previous convolutional layers (—GN). We also con-
duct experiments to investigate the impacts of several nor-
malization layers we use in our model by discarding the use
of them. Basically, we then have the model without us-
ing synchronized batch normalization (w/o SyncBN) and
without using spectral normalization [6] (w/o SpecNorm).
Results are reported in Tab. 1. Changing the normalization
layers to group normalization or removing the synchronized
batch normalization have slightly degraded the performance
on most metrics. However, removing the spectral normal-
ization layers in GroupDNet will largely increase mOCD,
indicating spectral normalization helps for the SMIS task.
The LPIPS and mCSD metrics of the model without Spec-
Norm are even higher than GroupDNet, which hints that
spectral normalization may have a negative effect on the di-
versity of the model’s generated images.

5. Discussions and future work

As mentioned earlier, a limitation of GroupDNet is the
restricted power to capture the class-wise modality of im-
ages in the Cityscapes dataset. Though the dataset itself
demonstrates very few variation of object appearance, we
believe there remains lots of methodological and architec-
tural modifications that could enable GroupDNet or other
models to handle such difficult cases.

Besides, we also feel the necessity to design a clean and
effective strategy to decide how to set the group numbers for
each convolution or possibly normalization layers. Though
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Figure 1. Architecture of our discriminator for all three datasets.
Note “Conv” means convolutional layer. The numbers after “-
¢”, “-s” and “-g” represent the channel number, stride and group
number of the corresponding convolution. If not specified, the
default kernel size, stride, padding and group number of the con-
volutional layer are 4, 2, 2, 1, respectively. “IN” represents in-
stance normalization layer and “LReLU” means leaky ReL U layer.
“Downsample(-)” means an average pooling layer with kernel size
set to the number inside the bracket.

we haven’t give clear experimental evidence, we feel that
different configuration of group numbers might have some
impacts on the performance. This conclusion is natural be-
cause different group number configurations determine dif-
ferent network structures and more often different network
structures have influence on the network performance.
Moreover, it is also interesting to discover whether
changing the input order of different classes could make any
difference to the performance, considering now we feed the
split input images to the encoder, following the order set by
the dataset provider or randomly set by us. It is quite natu-
ral to reason that putting similar classes together could make
the corresponding areas change harmoniously and concur-
rently, thus producing images with much more fidelity.

References

[1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
CVPR, pages 3213-3223, 2016. 1

[2] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Proc.
AISTATS, pages 249-256, 2010. 1

[3] Ke Gong, Xiaodan Liang, Yicheng Li, Yimin Chen, Ming
Yang, and Liang Lin. Instance-level human parsing via part

Conv-¢(1*C*G)-gG, IN, LReLU
v
Conv-¢(2*C*G)-gG, IN, LReLU
v
Conv-c(4*C*G)-gG, IN, LReLU
Conv-¢(8*C*G)-gG, IN, LReLU

v
A

Conv-¢(8*C*G)-gG, IN, LReLLU
Conv-¢(8*C*G)-gG, IN, LReLU

i
\ 2

Conv-¢(8*G)-s1-gG

Conv-c(8*G)-s1-gG

!
v

p o

Figure 2. Architecture of our encoder for three datasets. Note
“Conv” means convolutional layer. The numbers after “-c”, “-s”
and “-g” represent the channel number, stride and group number of
the corresponding convolution. If not specified, the default kernel
size, stride, padding and group number of the convolutional layer
are 3, 2, 1, 1, respectively. “IN” represents instance normaliza-
tion layer and “LReLU” means leaky ReLU layer. Here “C” and
“G” are pre-defined numbers for each datasets, which are given in
Tab. 2.

grouping network. In Proc. ECCV, pages 805-822, 2018. 1

[4] Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen,
and Liang Lin. Look into person: Self-supervised structure-
sensitive learning and a new benchmark for human parsing.
In Proc. CVPR, pages 6757-6765, 2017. 1

[5] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proc. CVPR, 2016. 1

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In Proc. ICLR, 2018. 2

[7] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proc. CVPR, pages 2337-2346, 2019. 1, 2

[8] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proc. CVPR, pages 8798-8807, 2018. 2



Models DeepFashion Cityscapes ADE20K
Encoder C=64,G=8 C=8_G=35 C=3G=151
Decoder | C'=160,G = {8,8,4,4,2,2,1} | C =280,G = {35,35,20,14,10,4,1} | C = {151,64},G = {151, 16, 16, 8,4,2,1,1}

Table 2. Pre-defined hyperparameters of different datasets for our encoder and decoder. Note in Fig. 2, Fig. 3 and Fig. 4, “C{i}” represent
the -th number inside the brace of C' and “G{i}” likewise in the brace of G.
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Figure 3. Architecture of our decoder for the DeepFashion and
Cityscapes datasets. Note “CGB” means our conditional group
block (CG-Block). The numbers after “-c”, “-s” and “-g” rep-
resent the channel number, stride and group number of the cor-
responding convolution. If not specified, the default kernel size,
stride, padding and group number of the convolutional layer are
3, 1, 1, 1, respectively. After each CG-Norm inside CG-Block,
there follows a ReLu layer. “Upsample(-)” means a nearest neigh-
bor upsampling layer with kernel size set to the number inside
the bracket. Here “C” and “G” are pre-defined numbers for each
datasets, which are given in Tab. 2.
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Figure 4. Architecture of our decoder for the ADE20K datasets.
Note “CGB” means our conditional group block (CG-Block). The
numbers after “-c”, “-s” and “-g” represent the channel number,
stride and group number of the corresponding convolution. If
not specified, the default kernel size, stride, padding and group
number of the convolutional layer are 3, 1, 1, 1, respectively. Af-
ter each CG-Norm inside CG-Block, there follows a ReLu layer.
“Upsample(-)” means a nearest neighbor upsampling layer with
kernel size set to the number inside the bracket. Here “C” and
“G” are pre-defined numbers for each datasets, which are given in
Tab. 2.
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Figure 5. Qualitative comparison between GroupDNet and other baseline models. The first three rows represent the results of different
models by changing their upper-clothes latent code. The middle three rows represent the results of different models by changing their
pants latent code while the last three rows represent their results of changing the hair latent code. Note, for those models which have no
class-specific latent code such as VSPADE, we alter their overall latent codes to generate different images.
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Figure 6. Qualitative comparison of our model with several label-to-image methods on the DeepFashion dataset.
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Figure 7. Qualitative comparison of our model with several label-to-image methods on the Cityscapes dataset.
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Figure 8. Qualitative comparison of our model with several label-to-image methods on the ADE20K dataset.



