Supplementary Materials

This Supplementary material elaborates on the Residual
flow algorithm and provides additional experiments.

1. Comparison: Proposed approach vs. LDA
(Mahalanobis) and GDA models

In this section we examine the performance of our ap-
proach compared with LDA (Mahalanobis) and GDA mod-
els. In GDA, feature activations of neural networks are
modeled using Gaussian discriminant analysis, i.e. poste-
rior of a Gaussian distribution with different mean and dif-
ferent covariance matrix for each class. Calculating the
log-likelihood of this model is equivalent to measuring the
Mahalanobis distance using a different covariance matrix
for each class and adding to it the log-determinant of the
class’s precision matrix'?. As in Section 3.2.1, if the fea-
ture vector is degenerate, we restrict our attention to its
corresponding non-degenerate sub-vector. In LDA (Maha-
lanobis), the feature activations are modeled using linear
discriminant analysis, i.e. posterior of a Gaussian distribu-
tion with different mean but with an identical covariance
matrix for all classes. We compare these models without
employing input-preprocessing. Figure 4 compares the per-
formance of Residual Flow against LDA and GDA for the
task of OOD detection. The models use ResNet trained
on CIFAR-100 (in-distribution) and tested on various OOD
datasets. The Figure shows that our method consistently
improves upon the state-of-the-art (LDA model). Note that
GDA may produce inferior results in some cases. Figures 5
and 6 show the AUROC comparison on various in- and out-
of-distribution datasets of DenseNet and ResNet, respec-
tively. The Figures affirm the observation that modeling fea-
ture activations with GDA can deteriorate performance in
some cases, especially when the number of per-class train-
ing examples is limited - as in the case of CIFAR-100 (Fig-
ure 6(c)). Estimating the empirical covariance matrix for
each class (GDA) suffers from high variance, exacerbated
in scenarios of a small training set. By learning the resid-
ual from the LDA model, our method overcomes this lim-
itation, resulting in consistently superior performance over
stat-of-the-art.

2. Alternative Architecture

Composing a non-linear flow with linear flow blocks can
be done in multiple ways. In this section, we describe an
alternative residual flow architecture to the one presented
in the main paper, and show that it obtains similar perfor-

10We also compare our method to a GDA variant, which uses the per-
class covariance matrix without the contribution of the log determinant
of the precision matrix. The results are similar to those of the full GDA
model, shown in Figures 5 and 6.
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(a) Residual Flow blocks in initialization and training.
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(b) The complete Residual Flow architecture Z = f(X).
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Figure 3. Residual Flow alternative architecture.

mance. The architecture comprises residual blocks, each
composed of a single linear and several non-linear blocks.
This architecture is more involved compared to the archi-
tecture in the main text, which comprises one linear flow
block. We start by defining a linear flow block f}":

T
Ty =21, T2 =x20exp(s;) +t;xy,

where s; € RY2 ; € R¥/2%d4/2 and o denotes element-
wise multiplication. Here s; and ¢; are scale and transla-
tion parameters. The scale parameters are crucial here, as
without them, the Jacobian determinant is a constant 1 by
definition [1 1], making the transformation volume preserv-
ing, and limiting the expressivity of the model. Next, we
compose a residual flow block f;¢*:
fires _ leln i - Z}fn_lin o Z}gn—lin op pi_17

where the linear flow block fi”" was defined above, 7 is a
switch permutation, p; is a permutation matrix and p; Lis
it’s inverse, and i’?f"_””, Z};”‘“" are non-linear blocks
as described in Eq. (2) in the main paper. We then compose
a residual flow model as:

fres = f1€° - f3°5 oo 155

Note that, from Eq. (2) in the main paper, when s;(-) = 0
and t;(-) = 0, the non-linear terms f"*"~"" are just the
identity, the permutation terms cancel each other, and in
that case the residual flow f7¢® is equivalent to the linear
flow f“". Thus, we pre-train the residual flow by fixing the
networks s;(-) and ¢;(-) to be zero, which is equivalent to
fitting a Gaussian distribution model to our data''. In prac-
tice, setting only the last layer of the networks for s;(-) and
t;(+) to zero is enough, and we found this to perform better
in fine tuning the non-linear terms, as most of the network
is not initialized to zero. Then, we fine tune the non-linear

"'The stopping condition for this stage is when the Kullback—Leibler
divergence measure between the linear flow px and the Gaussian distri-
bution calculated using the empirical covariance px meets the criteria:

Drr (bx||px) < 1074
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Figure 4. Receiver operating characteristic (ROC) curve comparison of our method, Mahalanobis (LDA) and GDA for the task of OOD
detection. The target network is ResNet trained on CIFAR-100. We compare the three models using the following out-of-distribution
datasets: (a) TinyImageNet, (b) SVHN and (c) LSUN. The x-axis and y-axis of the figures represent the false positive rate (FPR) and true

positive rate (TPR), respectively.
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Figure 5. Area under the receiver operating characteristic (AUROC) (%) curve comparison using DenseNet with 100 layers as a target
network. We compare our results with LDA and GDA models across different in- and out-of-distribution datasets. The in-distribution
datasets are: (a) CIFAR-10, (b) SVHN and (c) CIFAR-100, and the OOD datasets are presented on the x-axis of the figures.

components of the model to obtain a better fit to the data.
Figures 3 illustrates the alternative architecture. This archi-
tecture achieves similar results to that proposed in the main
paper (see Tables 3 and 4 for full comparison), but with the
extra time overhead of training the linear flow. Hence, we
chose to include the simpler architecture in the main paper.
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Figure 6. Area under the receiver operating characteristic (AUROC) (%) curve comparison using ResNet with 34 layers as a target network.
We compare our results with LDA and GDA models across different in- and out-of-distribution datasets. The in-distribution datasets are:
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(a) CIFAR-10, (b) SVHN and (c) CIFAR-100, and the OOD datasets are presented on the x-axis of the figures.

I LDA
I GDA
I Residual flow

SVHN

In-dist Out-of-dist TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out
(model) Y Mahalanobis [27]/ Res-Flow without pre-processing / Res-Flow with pre-processing
CIFAR-10 SVHN 88.4/92.7/944 96.8/98.5/98.8  92.4/94.0/948 98.7/99.4/99.5  90.4/96.6/97.6
(DenseNeny  mageNet  954/97.3/97.3  98.8/99.3/993  953/963/963 98.9/99.3/993  987/99.3/99.3
ensee LSUN 97.3/98.4/98.4 99.0/99.6/99.6  962/97.4/97.4 99.1/99.5/99.5  98.8/99.6/99.6
CIFAR-100 SVHN 84.1/68.0/87.1  962/92.8/968  91.0/853/91.1 98.6/96.6/98.6  89.2/85.5/94.4
(DenseNepy TinylmageNet  77.5/93.1/934  954/98.5/98.5  892/94.1/943  958/984/984  938/98.5/98.5
LSUN 69.4/953/953  94.6/98.8/98.8  89.2/954/954 953/98.5/98.5  92.7/98.9/98.9
SVEN CIFAR-10  958/96.9/97.5 98.8/99.2/993  958/96.7/97.0 95.4/96.9/97.4  99.6/99.7/99.8
(DenseNey  TinylmageNet  99.6/99.8/99.8  99.0/99.9/99.9  989/992/99.2  99.6/99.8/99.8 100.0/100.0/100.0
LSUN 99.7/99.8/99.8 99.9/100.0/100.0 99.3/99.5/99.5 99.7/99.9/99.9 100.0/100.0 / 100.0
CIFAR.10 SVHN 96.2/91.7/96.5  99.1/983/99.2  958/93.5/959 99.6/99.3/99.7  98.3/96.4/98.3
(ResNepy  TinylmageNet  97.4/98.9/983  99.5/99.8/99.6  963/97.6/97.1  995/99.7/996  995/99.7/99
esne LSUN 98.7/99.3/99.1  99.7/99.8/99.8  97.5/97.8/97.9 99.7/99.8/99.8  99.7/99.8/99.8
CIFAR-100 SVHN 92.4/83.4/940  982/965/98.5  93.8/90.3/94.6 99.2/98.6/993  96.2/92.7/97.2
(ResNeyy  TnylmageNet  89.4/95.0/950  97.9/98.9/99.9  927/950/950  97.9/98.9/989  979/98.8/98.8
LSUN 92.8/96.2/962  983/992/99.1  93.9/95.6/95.6 97.9/99.0/99.0  98.5/99.2/99.2
SVEN CIFAR-10  97.6/98.6/98.5 99.3/99.6/99.6  96.9/97.8/97.7 97.3/982/98.1  99.7/99.9/99.9
(ResNeyy  TinylmageNet  99.7/99.8/99.8  99.8/99.9/99.9  99.1/99.4/99.4  99.5/99.7/99.7  99.9/100.0/100.0
LSUN 99.8/99.9/99.9 99.9/100.0/100.0 99.6/99.7/99.7  99.6/99.7/99.7  99.9/100.0 / 100.0

Table 3. A comparison between residual flow implemented using the architecture described in Section 2 and Mahalanobis [27] on the task
of out-of-distribution detection for image classification of various in- and out-of-distribution data sets. The hyper-parameters were tuned
using a validation set of in- and out-of-distribution datasets. The values presented here are percentages and the best results are indicated in
bold.



In-dist Out-of-dist TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out
(model) Mahalanobis [27]/ Res-Flow without pre-processing / Res-Flow with pre-processing
CIFAR.10 SVHN 89.6/75.6/91.7  97.6/949/98.0 92.6/87.8/93.4 945/887/962  99.0/97.9/99.1
(DenseNepy  TivImageNet  94.9/97.3/97.3  988/99.3/99.3  950/964/964  987/99.4/99.4  98.8/99.3/99.3
enseie LSUN 97.2/98.4/984  99.2/99.6/99.6 96.2/97.4/97.4  993/99.6/99.6  99.2/99.6/99.6
CIFAR-100 SVHN 62.2/654/863 91.8/91.7/964  84.6/842/90.7 82.6/839/940  95.8/96.0/98.3
(DenseNeyy TinvImageNet  87.2/92.4/91.2  97.0/98.3/98.1  918/937/934  962/98.2/98.1  97.1/98.3/982
enseie LSUN 91.4/95.1/953  97.9/98.7/98.8  93.8/95.1/953  98.1/98.5/98.6 97.6/98.9/98.9
SVHN CIFAR-10 97.5/962/96.5 98.8/989/99.1  963/96.1/96.3  99.6/99.7/99.7  95.1/96.0/96.5
(DenseNepy  TinyImageNet  99.9/997/99.9  99.5/99.9/99.9  989/99.1/99.0  99.9/99.8/99.9  995/100.0/996
LSUN 100.0/99.8/100.0 99.9/99.9/99.9  99.2/99.4/993  99.9/99.8/100.0  99.6/99.9/99.7
CIFAR.I0 SVHN 75.8/76.0/957  955/942/989  89.1/87.1/95.6 91.0/97.4/99.4  98.0/89.3/98.0
(ResNeyy  TnvlageNet  955/988/98.5  99.0/99.7/99.6  954/974/97.1  98.6/99.7/99.6  99.1/99.7/99.6
LSUN 98.1/99.5/99.6  99.5/99.8/99.9 97.2/982/98.5  99.5/99.8/99.8  99.5/99.8/99.9
CIFAR-100 SVHN 419/59.1/66.8  84.4/90.6/924 765/82.6/84.9  69.1/81.0/833  92.7/95.8/96.8
(RosNeyy  TinvImageNet  70.3/73.9/77.3  87.9/888/89.6  84.6/845/867  768/788/79.2  907/888/925
LSUN 56.6/66.1/68.1  82.3/89.1/86.5 79.7/85.6/834  70.3/79.1/758  85.3/89.2/89.7
SVHN CIFAR-10 94.1/98.4/97.6  97.6/99.5/992  94.6/97.5/964  98.1/99.9/99.7  94.7/97.9/97.3
(ResNeyy  TinyImageNet — 99.2/99.9/99.9  99.3/99.9/99.9  985/99.5/99.5  988/99.7/99.9  98.3/100.0/99.6
LSUN 99.9/99.9/100.0 99.9/100.0/99.9 99.5/99.7/99.6  99.9/99.7/99.9  98.8/100.0 / 100.0

Table 4. A comparison between residual flow implemented using the architecture described in Section 2 and Mahalanobis [

] on the task

of out-of-distribution detection for image classification of various in- and out-of-distribution data sets. The hyper-parameters were tuned
using strictly in-distribution and adversarial (FGSM) samples. The values presented here are percentages and the best results are indicated

in bold.



