
Supplementary Materials

This Supplementary material elaborates on the Residual
flow algorithm and provides additional experiments.

1. Comparison: Proposed approach vs. LDA
(Mahalanobis) and GDA models

In this section we examine the performance of our ap-
proach compared with LDA (Mahalanobis) and GDA mod-
els. In GDA, feature activations of neural networks are
modeled using Gaussian discriminant analysis, i.e. poste-
rior of a Gaussian distribution with different mean and dif-
ferent covariance matrix for each class. Calculating the
log-likelihood of this model is equivalent to measuring the
Mahalanobis distance using a different covariance matrix
for each class and adding to it the log-determinant of the
class’s precision matrix10. As in Section 3.2.1, if the fea-
ture vector is degenerate, we restrict our attention to its
corresponding non-degenerate sub-vector. In LDA (Maha-
lanobis), the feature activations are modeled using linear
discriminant analysis, i.e. posterior of a Gaussian distribu-
tion with different mean but with an identical covariance
matrix for all classes. We compare these models without
employing input-preprocessing. Figure 4 compares the per-
formance of Residual Flow against LDA and GDA for the
task of OOD detection. The models use ResNet trained
on CIFAR-100 (in-distribution) and tested on various OOD
datasets. The Figure shows that our method consistently
improves upon the state-of-the-art (LDA model). Note that
GDA may produce inferior results in some cases. Figures 5
and 6 show the AUROC comparison on various in- and out-
of-distribution datasets of DenseNet and ResNet, respec-
tively. The Figures affirm the observation that modeling fea-
ture activations with GDA can deteriorate performance in
some cases, especially when the number of per-class train-
ing examples is limited - as in the case of CIFAR-100 (Fig-
ure 6(c)). Estimating the empirical covariance matrix for
each class (GDA) suffers from high variance, exacerbated
in scenarios of a small training set. By learning the resid-
ual from the LDA model, our method overcomes this lim-
itation, resulting in consistently superior performance over
stat-of-the-art.

2. Alternative Architecture
Composing a non-linear flow with linear flow blocks can

be done in multiple ways. In this section, we describe an
alternative residual flow architecture to the one presented
in the main paper, and show that it obtains similar perfor-

10We also compare our method to a GDA variant, which uses the per-
class covariance matrix without the contribution of the log determinant
of the precision matrix. The results are similar to those of the full GDA
model, shown in Figures 5 and 6.
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(a) Residual Flow blocks in initialization and training.
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(b) The complete Residual Flow architecture Z = f(X).

Figure 3. Residual Flow alternative architecture.

mance. The architecture comprises residual blocks, each
composed of a single linear and several non-linear blocks.
This architecture is more involved compared to the archi-
tecture in the main text, which comprises one linear flow
block. We start by defining a linear flow block f lini :

x1 = z1, x2 = x2 ◦ exp(si) + tTi x1,

where si ∈ Rd/2, ti ∈ Rd/2×d/2, and ◦ denotes element-
wise multiplication. Here si and ti are scale and transla-
tion parameters. The scale parameters are crucial here, as
without them, the Jacobian determinant is a constant 1 by
definition [11], making the transformation volume preserv-
ing, and limiting the expressivity of the model. Next, we
compose a residual flow block fresi :

fresi = f lini · pi · fnon−lini,1 · r · fnon−lini,2 · r · p−1i ,

where the linear flow block f lini was defined above, r is a
switch permutation, pi is a permutation matrix and p−1i is
it’s inverse, and fnon−lini,1 , fnon−lini,2 are non-linear blocks
as described in Eq. (2) in the main paper. We then compose
a residual flow model as:

fres = fres1 · r · fres2 . . . r · fresk .

Note that, from Eq. (2) in the main paper, when si(·) = 0
and ti(·) = 0, the non-linear terms fnon−lini are just the
identity, the permutation terms cancel each other, and in
that case the residual flow fres is equivalent to the linear
flow f lin. Thus, we pre-train the residual flow by fixing the
networks si(·) and ti(·) to be zero, which is equivalent to
fitting a Gaussian distribution model to our data11. In prac-
tice, setting only the last layer of the networks for si(·) and
ti(·) to zero is enough, and we found this to perform better
in fine tuning the non-linear terms, as most of the network
is not initialized to zero. Then, we fine tune the non-linear

11The stopping condition for this stage is when the Kullback–Leibler
divergence measure between the linear flow p̂X and the Gaussian distri-
bution calculated using the empirical covariance p̃X meets the criteria:
DKL (p̂X ||p̃X) < 10−4.
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Figure 4. Receiver operating characteristic (ROC) curve comparison of our method, Mahalanobis (LDA) and GDA for the task of OOD
detection. The target network is ResNet trained on CIFAR-100. We compare the three models using the following out-of-distribution
datasets: (a) TinyImageNet, (b) SVHN and (c) LSUN. The x-axis and y-axis of the figures represent the false positive rate (FPR) and true
positive rate (TPR), respectively.

TinyImageNet SVHN LSUN85

90

95

100

Te
st

 se
t A

UR
OC

 (%
) 98.3 98.7 99.2

96.9 97.4

98.9 99.1 99.3 99.5

In-distribution: CIFAR10

LDA
GDA
Residual flow

(a)

TinyImageNet CIFAR10 LSUN85

90

95

100

Te
st

 se
t A

UR
OC

 (%
)

99.9 99.9 100
98.9 98.8

99.5 99.9 99.9 100

In-distribution: SVHN

LDA
GDA
Residual flow

(b)

TinyImageNet SVHN LSUN85

90

95

100

Te
st

 se
t A

UR
OC

 (%
)

92.5

97.7
98.5

88.2
88.9

95.2 94.7

98.6 98.9

In-distribution: CIFAR100

LDA
GDA
Residual flow

(c)

Figure 5. Area under the receiver operating characteristic (AUROC) (%) curve comparison using DenseNet with 100 layers as a target
network. We compare our results with LDA and GDA models across different in- and out-of-distribution datasets. The in-distribution
datasets are: (a) CIFAR-10, (b) SVHN and (c) CIFAR-100, and the OOD datasets are presented on the x-axis of the figures.

components of the model to obtain a better fit to the data.
Figures 3 illustrates the alternative architecture. This archi-
tecture achieves similar results to that proposed in the main
paper (see Tables 3 and 4 for full comparison), but with the
extra time overhead of training the linear flow. Hence, we
chose to include the simpler architecture in the main paper.
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Figure 6. Area under the receiver operating characteristic (AUROC) (%) curve comparison using ResNet with 34 layers as a target network.
We compare our results with LDA and GDA models across different in- and out-of-distribution datasets. The in-distribution datasets are:
(a) CIFAR-10, (b) SVHN and (c) CIFAR-100, and the OOD datasets are presented on the x-axis of the figures.

In-dist
(model)

Out-of-dist
TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out

Mahalanobis [27]/ Res-Flow without pre-processing / Res-Flow with pre-processing

CIFAR-10
(DenseNet)

SVHN 88.4 / 92.7 / 94.4 96.8 / 98.5 / 98.8 92.4 / 94.0 / 94.8 98.7 / 99.4 / 99.5 90.4 / 96.6 / 97.6
ImageNet 95.4 / 97.3 / 97.3 98.8 / 99.3 / 99.3 95.3 / 96.3 / 96.3 98.9 / 99.3 / 99.3 98.7 / 99.3 / 99.3

LSUN 97.3 / 98.4 / 98.4 99.0 / 99.6 / 99.6 96.2 / 97.4 / 97.4 99.1 / 99.5 / 99.5 98.8 / 99.6 / 99.6

CIFAR-100
(DenseNet)

SVHN 84.1 / 68.0 / 87.1 96.2 / 92.8 / 96.8 91.0 / 85.3 / 91.1 98.6 / 96.6 / 98.6 89.2 / 85.5 / 94.4
TinyImageNet 77.5 / 93.1 / 93.4 95.4 / 98.5 / 98.5 89.2 / 94.1 / 94.3 95.8 / 98.4 / 98.4 93.8 / 98.5 / 98.5

LSUN 69.4 / 95.3 / 95.3 94.6 / 98.8 / 98.8 89.2 / 95.4 / 95.4 95.3 / 98.5 / 98.5 92.7/ 98.9 / 98.9

SVHN
(DenseNet)

CIFAR-10 95.8 / 96.9 / 97.5 98.8 / 99.2 / 99.3 95.8 / 96.7 / 97.0 95.4 / 96.9 / 97.4 99.6 / 99.7 / 99.8
TinyImageNet 99.6 / 99.8 / 99.8 99.9 / 99.9 / 99.9 98.9 / 99.2 / 99.2 99.6 / 99.8 / 99.8 100.0 / 100.0 / 100.0

LSUN 99.7 / 99.8 / 99.8 99.9 / 100.0 / 100.0 99.3 / 99.5 / 99.5 99.7 / 99.9 / 99.9 100.0 / 100.0 / 100.0

CIFAR-10
(ResNet)

SVHN 96.2 / 91.7 / 96.5 99.1 / 98.3 / 99.2 95.8 / 93.5 / 95.9 99.6 / 99.3 / 99.7 98.3/ 96.4 / 98.3
TinyImageNet 97.4 / 98.9 / 98.3 99.5 / 99.8 / 99.6 96.3 / 97.6 / 97.1 99.5 / 99.7 / 99.6 99.5 / 99.7 / 99.6

LSUN 98.7 / 99.3 / 99.1 99.7 / 99.8 /99.8 97.5 / 97.8 / 97.9 99.7 / 99.8 / 99.8 99.7 / 99.8 / 99.8

CIFAR-100
(ResNet)

SVHN 92.4 / 83.4 / 94.0 98.2 / 96.5 / 98.5 93.8 / 90.3 / 94.6 99.2 / 98.6 / 99.3 96.2 / 92.7 / 97.2
TinyImageNet 89.4 / 95.0 / 95.0 97.9 / 98.9 / 99.9 92.7 / 95.0 / 95.0 97.9 / 98.9 / 98.9 97.9 / 98.8 / 98.8

LSUN 92.8 / 96.2 / 96.2 98.3 / 99.2 / 99.1 93.9 / 95.6 / 95.6 97.9 / 99.0 / 99.0 98.5 / 99.2 / 99.2

SVHN
(ResNet)

CIFAR-10 97.6 / 98.6 / 98.5 99.3 / 99.6 / 99.6 96.9 / 97.8 / 97.7 97.3 / 98.2 / 98.1 99.7 / 99.9 / 99.9
TinyImageNet 99.7 / 99.8 / 99.8 99.8 / 99.9 / 99.9 99.1 / 99.4 / 99.4 99.5 / 99.7 / 99.7 99.9 / 100.0 / 100.0

LSUN 99.8 / 99.9 / 99.9 99.9 / 100.0 / 100.0 99.6 / 99.7 / 99.7 99.6 / 99.7 / 99.7 99.9 / 100.0 / 100.0

Table 3. A comparison between residual flow implemented using the architecture described in Section 2 and Mahalanobis [27] on the task
of out-of-distribution detection for image classification of various in- and out-of-distribution data sets. The hyper-parameters were tuned
using a validation set of in- and out-of-distribution datasets. The values presented here are percentages and the best results are indicated in
bold.



In-dist
(model)

Out-of-dist
TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out

Mahalanobis [27]/ Res-Flow without pre-processing / Res-Flow with pre-processing

CIFAR-10
(DenseNet)

SVHN 89.6 / 75.6 / 91.7 97.6 / 94.9 / 98.0 92.6 / 87.8 / 93.4 94.5 / 88.7 / 96.2 99.0 / 97.9 / 99.1
TinyImageNet 94.9 / 97.3 / 97.3 98.8 / 99.3 / 99.3 95.0 / 96.4 / 96.4 98.7 / 99.4 / 99.4 98.8 / 99.3 / 99.3

LSUN 97.2 / 98.4 / 98.4 99.2 / 99.6 / 99.6 96.2 / 97.4 / 97.4 99.3 / 99.6 / 99.6 99.2 / 99.6 / 99.6

CIFAR-100
(DenseNet)

SVHN 62.2 / 65.4 / 86.3 91.8 / 91.7 / 96.4 84.6 / 84.2 / 90.7 82.6 / 83.9 / 94.0 95.8 / 96.0 / 98.3
TinyImageNet 87.2 / 92.4 / 91.2 97.0 / 98.3 / 98.1 91.8 / 93.7 / 93.4 96.2 / 98.2 / 98.1 97.1 / 98.3 / 98.2

LSUN 91.4 / 95.1 / 95.3 97.9 / 98.7 / 98.8 93.8 / 95.1 / 95.3 98.1 / 98.5 / 98.6 97.6 / 98.9 / 98.9

SVHN
(DenseNet)

CIFAR-10 97.5 / 96.2 / 96.5 98.8 / 98.9 / 99.1 96.3 / 96.1 / 96.3 99.6 /99.7 / 99.7 95.1 / 96.0 / 96.5
TinyImageNet 99.9/ 99.7 / 99.9 99.8 / 99.9 / 99.9 98.9 / 99.1 / 99.0 99.9 / 99.8 / 99.9 99.5 / 100.0 / 99.6

LSUN 100.0 / 99.8 / 100.0 99.9 / 99.9 / 99.9 99.2 / 99.4 / 99.3 99.9 / 99.8 / 100.0 99.6 / 99.9 / 99.7

CIFAR-10
(ResNet)

SVHN 75.8 /76.0 / 95.7 95.5 / 94.2 / 98.9 89.1 / 87.1 / 95.6 91.0 / 97.4 / 99.4 98.0 / 89.3 / 98.0
TinyIageNet 95.5 / 98.8/ 98.5 99.0 / 99.7 / 99.6 95.4 / 97.4 / 97.1 98.6 / 99.7 / 99.6 99.1 / 99.7 / 99.6

LSUN 98.1 / 99.5 / 99.6 99.5 / 99.8 / 99.9 97.2 / 98.2 / 98.5 99.5 /99.8 / 99.8 99.5 / 99.8 / 99.9

CIFAR-100
(ResNet)

SVHN 41.9 / 59.1 / 66.8 84.4 / 90.6 / 92.4 76.5 / 82.6 / 84.9 69.1 / 81.0 / 83.3 92.7 / 95.8 / 96.8
TinyImageNet 70.3 / 73.9 / 77.3 87.9 / 88.8 / 89.6 84.6 / 84.5 / 86.7 76.8 / 78.8 / 79.2 90.7 / 88.8 / 92.5

LSUN 56.6 / 66.1 / 68.1 82.3 / 89.1 / 86.5 79.7 / 85.6 / 83.4 70.3 / 79.1 / 75.8 85.3 / 89.2 / 89.7

SVHN
(ResNet)

CIFAR-10 94.1 / 98.4 / 97.6 97.6 / 99.5 / 99.2 94.6 / 97.5 / 96.4 98.1 / 99.9 / 99.7 94.7 / 97.9 / 97.3
TinyImageNet 99.2 / 99.9 / 99.9 99.3 / 99.9 / 99.9 98.8 / 99.5 / 99.5 98.8 / 99.7 / 99.9 98.3 / 100.0 / 99.6

LSUN 99.9 / 99.9 / 100.0 99.9 / 100.0 / 99.9 99.5 / 99.7 / 99.6 99.9 / 99.7 / 99.9 98.8 / 100.0 / 100.0

Table 4. A comparison between residual flow implemented using the architecture described in Section 2 and Mahalanobis [27] on the task
of out-of-distribution detection for image classification of various in- and out-of-distribution data sets. The hyper-parameters were tuned
using strictly in-distribution and adversarial (FGSM) samples. The values presented here are percentages and the best results are indicated
in bold.


