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1 Training details
In our default settings, we train our model for 200 epochs by using the Adam optimizer [6] with batch size = 2.
For the first 100 epochs, we set learning rate = 0.0001. For the rest epochs, we reduce the learning rate to its
1/10. We set βC = βM = 0 for the first 10 epochs to stabilize the training and then set βC = βM = 0.001
for the rest epochs. We do not use batch-normalization or dropout layers in G as we found it may introduce
unexpected artifacts.

As is suggested by I. Goodfellow et al.[2], instead of training G to minimize log(1−D(G(·))), in practice,
we try to maximize logD(G(·)). This is because in early stage of learning, log(1−D(G(·))) tends to saturate.
This revision on objective provides much stronger gradients early in learning.

2 Configurations of our Networks
We build our separator G by following the configuration of the UNet [10]. For input images of three different
sizes, i.e., 128x128, 256x256, and 512x512, we set the layer number of our separator to 14, 16, 18, respectively.
We add skip connections to our separator between the layer i and layer n − i for learning both high-level
semantics and low-level details. We remove the nonlinear activation on the last layer of our separator since we
found it may slow-down the convergence.

We build our discriminators by following the configurations of Pix2Pix [4]. We build our DC , DM1 and
DM2 as three standard FCNs with 4, 3, and 3 convolutional layers. The perceptive fields of DM1 and DM1 are
set to N = 30. We resize the input of DC to a relatively small size, e.g., 64× 64, and set the receptive field size
larger than this size to capture the semantics of the whole image instead of adding more layers or using larger
pooling/convolutional strides.

Suppose “CDk” represents a down-sampling convolution layer with k filters, spatial size=4×4 and stride=2;
“CUk” represents a up-sampling fractional-strided convolution layer (a.k.a. the transposed convolution) [15]
with k filters, spatial size=4×4 and stride=1/2; “BN” represents a batch-normalization layer; “xk” means we
repeat the module x for k times. All ReLUs in the down sampling layers of any of our networks are set to leaky
ReLUs with slope=0.2, while those in the up-sampling layers are set to standard ones.

The architectures of our separators are as follows:
UNet128: CD64-CD128-CD256-CD512x4-CU512-CU1024x3-CU512-CU256-CU128.
UNet256: CD64-CD128-CD256-CD512x5-CU512-CU1024x4-CU512-CU256-CU128.
UNet512: CD64-CD128-CD256-CD512x6-CU512-CU1024x5-CU512-CU256-CU128.

The architectures of our discriminators are as follows:
Critic DC : CD64-CD128-BN-CD256-BN-CD512-BN-CD512.
Distriminator DMi (i=1,2): CD64-CD128-BN-CD256-BN-CD256.
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Figure 1: More comparison results on single mixed image separation: (a) input mixed image, (b) the method of
Levin et al.[7], (c) Double-DIP [1], and (d) our method. Datasets: Stanford-Dogs [5] + VGG-Flowers [8].
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Figure 2: More comparison results on single mixed image separation: (a) input mixed image, (b) the method of
Levin et al.[7], (c) Double-DIP [1], and (d) our method. Datasets: LSUN Classroom + LSUN Church [14].
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Figure 3: More comparison results of different reflection removal methods: BDN [13] (ECCV’18), RmNet [12]
(CVPR’19), and our method, on some real-world reflection images from the dataset [16].

Figure 4: More examples of the reflection removal results with our method on the BDN dataset [13].
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Figure 5: More comparison results between our method and DSC (TPAMI19) [3] on the shadow removal dataset
ISTD [11].

Figure 6: More comparison results between our method and DSC (TPAMI19) [3] on the shadow removal dataset
SRD [9].
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