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Abstract. Estimating depth from a single image is a very challenging
and exciting topic in computer vision with implications in several ap-
plication domains. Recently proposed deep learning approaches achieve
outstanding results by tackling it as an image reconstruction task and
exploiting geometry constraints (e.g., epipolar geometry) to obtain su-
pervisory signals for training. Inspired by these works and compelling
results achieved by Generative Adversarial Network (GAN) on image
reconstruction and generation tasks, in this paper we propose to cast
unsupervised monocular depth estimation within a GAN paradigm. The
generator network learns to infer depth from the reference image to gen-
erate a warped target image. At training time, the discriminator network
learns to distinguish between fake images generated by the generator
and target frames acquired with a stereo rig. To the best of our knowl-
edge, our proposal is the first successful attempt to tackle monocular
depth estimation with a GAN paradigm and the extensive evaluation on
CityScapes and KITTI datasets confirm that it enables to improve tra-
ditional approaches. Additionally, we highlight a major issue with data
deployed by a standard evaluation protocol widely used in this field and
fix this problem using a more reliable dataset recently made available by
the KITTI evaluation benchmark.

1 Introduction

Accurate depth estimation is of paramount importance for many computer vision
tasks and for this purpose active sensors, such as LIDARs or Time of Flight sen-
sors, are being extensively deployed in most practical applications. Nonetheless,
passive depth sensors based on conventional cameras have notable advantages
compared to active sensors. Thus, a significant amount of literature aims at tack-
ling depth estimation with standard imaging sensors. Most approaches reply on
multiple images acquired from different viewpoints to infer depth through binoc-
ular stereo, multi-view stereo, structure from motion and so on. Despite their
effectiveness, all of them rely on the availability of multiple acquisitions of the
sensed environment (e.g., binocular stereo requires two synchronized images).
Monocular depth estimation represents an appealing alternative to overcome
such constraint and recent works in this field achieved excellent results leveraging
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Fig. 1. Estimated depth maps from single image. On top, frame from KITTI 2015
dataset, on bottom (a) detail from reference image (red rectangle), (b) depth predicted
by Godard et al. [13] and (c) by our GAN architecture.

machine learning [21J6124]T3]. Early works tackled this problem in a supervised
manner [21J6l24] by training on a large amount of images with pixel-level depth
labels. However, is well known that gathering labeled data is not trivial and par-
ticularly expensive when dealing with depth measurements [T2/TTI30U38]. More
recent methods [54UT3] aim to overcome this issue casting monocular depth esti-
mation as an image reconstruction problem. In [54] inferring camera ego-motion
in image sequences and in [I3] leveraging a stereo setup. In both cases, difficult to
source labeled depth data are not required at all for training. The second method
yields much better results outperforming even supervised methods [21J6l24] by
a large margin.

Recently, Generative Adversarial Networks (GANs) [14] proved to be very
effective when dealing with high-level tasks such as image synthesis, style transfer
and more. In this framework, two architectures are trained to solve competitive
tasks. The first one, referred to as generator, produces a new image from a given
input (e.g., a synthetic frame from noise, an image with a transferred style,
etc.) while the second one called discriminator is trained to distinguish between
real images and those generated by the first network. The two models play a
min-max game, with the generator trained to produce outputs good enough to
fool the discriminator and this latter network trained to not being fooled by the
generator.

Considering the methodology adopted by state-of-the-art methods for unsu-
pervised monocular depth estimation and the intrinsic ability of GANs to detect
inconsistencies in images, in this paper we propose to infer depth from monocular
images by means of a GAN architecture. Given a stereo pair, at training time,
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our generator learns to produce meaningful depth representations, with respect
to left and right image, by exploiting the epipolar constraint to align the two
images. The warped images and the real ones are then forwarded to the discrim-
inator, trained to distinguish between the two cases. The rationale behind our
idea is that a generator producing accurate depth maps will also lead to better
reconstructed images, harder to be distinguished from original unwarped inputs.
At the same time, for the discriminator will be harder to be fooled, pushing the
generator to build more realistic warped images and thus more accurate depth
predictions.

In this paper, we report extensive experimental results on the KITTI 2015
dataset, which provides a large amount of unlabeled stereo images and thus it
is ideal for unsupervised training. Moreover, we highlight and fix inconsistencies
in the commonly adapted split of Eigen [6], replacing Velodyne measurements
with more accurate labels recently made available on KITTI [40]. Therefore, our
contribution is threefold:

— Our framework represents, to the best of our knowledge, the first method to
tackle monocular depth estimation within a GAN paradigm

— It outperforms traditional methods

— We propose a more reliable evaluation protocol for the split of Eigen et al.

[6]

2 Related Work

Depth estimation from images has a long history in computer vision. Most pop-
ular techniques rely on synchronized image pairs [39], multiple acquisitions from
different viewpoints [9], at different time frames [35] or in presence of illumina-
tion changes [45]. Although certainly relevant to our work, these methods are
not able to infer depth from a single image while recent methods casting depth
prediction as a learning task and applications of GANs to other fields are strictly
related to our proposal.

Learning-Based Stereo. Traditional binocular stereo algorithms perform
a subset of steps as defined in [39]. The matching cost computation phase is com-
mon to all approaches, encoding an initial similarity score between pixels on ref-
erence image, typically the left, and matching candidates on the target. The sem-
inal work by Zbontar and LeCun [50J51] computes matching costs using a CNN
trained on image patches and deploys such strategy inside a well-established
stereo pipeline [15] achieving outstanding results. In a follow-up work, Luo et al.
[25] obtained more accurate matching representation casting the correspondence
search as a multi-class classification problem. A significant departure from this
strategy is represented by DispNet [29], a deep architecture aimed at regressing
per-pixel disparity assignments after an end-to-end training. These latter meth-
ods require a large amount of labeled images (i.e., stereo pairs with ground-truth
disparity) for training [29]. Other works proposed novel CNN-based architectures
inspired by traditional stereo pipeline as GC-Net [I8] and CLR [31].



4 F. Aleotti, F. Tosi, M. Poggi, S. Mattoccia

Supervised monocular depth estimation. Single image depth estima-
tion is an ill-posed problem due to the lack of geometric constraints and thus it
represents a much more challenging task compared to depth from stereo. Saxena
et al. [37] proposed Make3D, a patch-based model estimating 3D location and
orientation of local planes by means of a MRF framework. This technique suffers
in presence of thin structures and lack of global context information often useful
to obtain consistent depth estimations. Liu et al. [24] trained a CNN to tackle
monocular depth estimation, while Ladicky et al. [2I] exploited semantic infor-
mation to obtain more accurate depth predictions. In [I7] Karsch et al. achieved
more consistent predictions at testing time by copying entire depth images from
a training set. Eigen et al. [6] proposed a multi-scale CNN trained in supervised
manner to infer depth from a single image. Differently from [24], whose network
was trained to compute more robust data terms and pairwise terms, this ap-
proach directly infers the final depth map from the input image. Following [0]
other works enabled more accurate estimations by means of CRF regulariza-
tion [23], casting the problem as a classification task [2], designing more robust
loss functions [22] or using scene priors for plane normals estimation [43]. Luo
et al. [20] formulated monocular depth estimation as a stereo matching prob-
lem in which the right view is generated by a view-synthesis network based on
Deep 3D [46]. Fu et al. [§] proposed a very effective depth discretization strategy
and a novel ordinal regression loss achieving state-of-the-art results on different
challenging benchmarks. Kumar et al. [4] demonstrated that recurrent neural
networks (RNNs) can learn spatio-temporally accurate monocular depth pre-
diction from video sequences. Atapour at al. [I] take advantage of style transfer
and adversarial training on synthetic data to predict depth maps from real-world
color images. Lastly, Ummenhofer et al. [41] proposed DeMoN, a deep model to
infer both depth and ego-motion from a pair of subsequent frames acquired by
a single camera. As for deep stereo models all these techniques require a large
amount of labeled data at training time to learn meaningful depth representation
from a single image.

Unsupervised monocular depth estimation. Pertinent to our proposal
are some recent works concerned with view synthesis. Flynn et al. [7] proposed
DeepStereo, a deep architecture trained on images acquired by multiple cameras
in unsupervised manner to generate novel view points. Deep3D by Xie et al. [40]
generates corresponding target view from an input reference image in the con-
text of binocular stereo, by learning a distribution over all possible disparities
for each pixel on the source frame and training their model with a reconstruction
loss. Similarly, Garg et al. [I0] trained a network for monocular depth estima-
tion using a reconstruction loss over a stereo pair. To make their model fully
differentiable they used Taylor approximation to make their loss linear, result-
ing in a more challenging objective to optimize. Godard et al. [I3] overcome
this problem by using a bilinear sampling [16] to generate images from depth
prediction. At training time, this model learns to predict depth for both images
in a stereo pair thus enabling to enforce a left-right consistency constraint as
supervisory signal. A simple post-processing step allows to refine depth predic-
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Fig. 2. Proposed adversarial model. Given a single input frame, depth maps are pro-
duced by a Generator (blue) and used to warp images. Discriminator (gray) process
both raw and warped images, trying to classify the former as real and the latter as
fake. The generator is pushed to improve depth prediction to provide a more realistic
warping to fool the discriminator. At the same time the discriminator learns to improve
its ability to perform this task.

tion. This approach was extended by including additional temporal information
[52] and by training with semi-supervised data [20/48]. While previous method
requires rectified stereo pairs for training, Zhou et al. [54] proposed to train a
model to infer depth from unconstrained video sequences by computing a re-
construction loss between subsequent frames and predicting, at the same time,
the relative pose between them. This strategy removes the requirement of stereo
pairs for training but produces a less accurate depth estimation. Wang et al.
[42] proposed a simple normalization strategy that circumvent problems in the
scale sensitivity of the depth regularization terms employed during training and
empirically demonstrated that the incorporation of a differentiable implemen-
tation of Direct Visual Odometry (DVO) improves previous monocular depth
performance [54]. Mahjourian et al. [27] used a novel approximate ICP based
loss to jointly learn depth and camera motion for rigid scenes, while Yin et al.
[47] proposed a learning framework for jointly training monocular depth, optical
flow and camera motion from video. [52]. Concurrently with our work, Poggi
et al. [32] deployed a thin model for depth estimation on CPU and proposed a
trinocular paradigm [33] to improve unsupervised approaches based on stereo su-
pervision, while Zama Ramirez et al. [49] proposed a semi-superised framework
for joint depth and semantic estimation.

Generative Adversarial Networks. GANs [14] recently gained popularity
by enabling to cast computer vision problems as a competitive task between two
networks. Such methodology achieved impressive performance for image general-
ization [5l34], editing [55] and representation learning [34128] tasks. More recent
applications include text-to-image [36/53] and image-to-image [56] translations.
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3 Method overview

In this section we describe our adversarial framework for unsupervised monoc-
ular depth estimation. State-of-the-art approaches rely on single network to ac-
complish this task. In contrast, at the core of our strategy there is a novel loss
function based on a two players min-max game between two adversarial net-
works, as shown in Figure |2, This is done by using both a generative and a
discriminative model competing on two different tasks, each one aimed at pre-
vailing the other. This section discusses the geometry of the problem and how it
is used to take advantages of 2D photometric constraints with a generative ad-
versarial approach in a totally unsupervised manner. We refer to our framework
as MonoGAN.

3.1 Generator model for monocular depth estimation

The main goal of our framework is to estimate an accurate depth map from
a single image without relying on hard to find ground-truth depth labels for
training. For this purpose, we can model this problem as a domain transfer task:
given an input image x, we want to obtain a new representation y = G(z) in
the depth domain. In other contexts, GAN models have been successfully de-
ployed for image-to-image translation [56]. For our purpose a generator network,
depicted in blue in Figure [2] is trained to learn a transfer function G : Z — D
mapping an input image from Z to D, respectively, the RGB and the depth
domain. To do so, it is common practice to train the generator with loss sig-
nals enforcing structure consistency across the two domains to preserve object
shapes, spatial consistency, etc. Similarly, this can be done for our specific goal
by exploiting view synthesis. That is, projecting RGB images into 3D domain
according to estimated depth and then back-projecting to new synthesized view
for which we need a real image to compare with. To make it possible, for each
training sample at least two images from different points of view are required
to enable the image reconstruction process described so far. In literature, this
strategy is used by other unsupervised techniques for monocular depth estima-
tion, exploiting both unconstrained sequences [54] or stereo imagery [13]. In this
latter case, given two images i! and i" acquired by a stereo setup, the generator
estimates inverse depth (i.e., disparity) d' used to obtain a synthesized image it
by warping " with bilinear sampler function [16] being it fully differentiable and
thus enabling end-to-end training. If d' is accurate, shapes and structures are
preserved after warping, while an inaccurate estimation would lead to distortion
artifacts as shown on the right of Figure [3] This process is totally unsupervised
with respect to the D domain and thus it does not require at all ground-truth
labels at training time. Moreover, by estimating a second output d”, representing
the inverse mapping from ! to ", allows to use additional supervisory signals by
enforcing consistency in the D domain (i.e., Left-Right consistency constraint).
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3.2 Discriminator model

To successfully accomplish domain transfer, GANs rely on a second network
trained to distinguish images produced by the generator from those belonging
to the target domain, respectively fake and real samples. We follow the same
principle using the gray model in Figure [2| but acting differently from other
approaches. In particular, to discriminate synthesized images from real ones we
need a large amount of samples in the target domain. While for traditional do-
main transfer applications this does not represent an issue (requiring images
without annotation), this becomes a limitation when depth is the target domain
being ground-truth label difficult to source in this circumstance. To overcome
this limitation, we train a discriminator to work on the RGB domain to tell
original input images from synthesized ones. Indeed, if estimated disparity by
the generator is not accurate, the warping process would reproduce distortion
artifacts easily detectable by the discriminator. On the other hand, an accu-
rate depth prediction would lead to a reprojected image harder to be recognized
from a real one. Figure [3] shows, on the left, an example of real image and,
on the right, a warped one synthesized according to an inaccurate depth esti-
mation. For instance, by looking at the tree, we can easily tell the real image
from the warped one. By training the discriminator on this task, the genera-
tor is constantly forced to produce more accurate depth maps thus leading to
a more realistic reconstructed image in order to fool it. At the same time the
discriminator is constantly pushed to improve its ability to tell real images from
synthesized ones. Our proposal aims at such virtuous behavior by properly mod-
eling the adversarial contribution of the two networks as described in detail in
the next section.

4 Adversarial formulation

To train the framework outlined so far in end-to-end manner we define an objec-
tive function £(G, D) sum of two terms, a Ly expressing the min-max game
between generator G and discriminator D:

Loan = mén max V(G, D) =E;,~z[log(D(ip))]
+E;, illog (1 — D(i1))]

i1~1

(1)

with g and 4; belonging, respectively, to real images Z and fake images Z domains
being the latter obtained by bilinear warping according to depth estimated by
G and a data term L4, resulting in:

L(G,D) = Lean + Laata (2)

According to this formulation, generator G and discriminator D are trained to
minimize loss functions L& and Lp:
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Fig. 3. Example of real (top) and warped (bottom) image according to an estimated
depth. We can clearly notice how inaccurate predictions lead to warping artifacts on
the reprojected frame (e.g., distorted trees) not perceivable elsewhere.

CG = »Cdata + aadvE ~[10g (D('Ll))] (3)

10,01~

1 1
Lp = —5Ei~zlog(D(io)) — 5E; zlog(1 — D(i)) (4)

To give an intuition, G is trained to minimize the loss from data term and the
probability that D will classify a warped image i1 ~ Z as fake. This second contri-
bution is weighted according to ay,q, factor, hyper-parameter of our framework.
Consistently, D is trained to classify a raw image ig ~ Z as real and a warped
one as fake. Despite our framework processes a transfer from Z to depth domain
D, we highlight how in the proposed adversarial formulation the discriminator
does not process any sample from domain D, neither fake nor real. Thus it does
not require any ground-truth depth map and perfectly fits with an unsupervised
monocular depth estimation paradigm.

4.1 Data term loss
We define the data term L4,4, part of the generator loss function L as follows:

Edata - 6ap(£ap) + Bds (Eds) + ﬂlr (Elr) (5)

where the loss consists in the weighted sum of three terms. The first one,
namgly appearence term, measures the reconstruction error between warped im-
age I and real one I by means of SSIM [44] and L1 difference of the two
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Fig. 4. Analysis of hyper-parameters aqq, and k of our GAN model, on x axis qdo,
on y axis an evaluation metric. a) Abs Rel, b) Sq Rel and ¢) RMSE metrics (lower is
better). d) § < 1.25, e) § < 1.25%, f) § < 1.25° metrics (higher is better). Interpolation
is used for visualization purpose only. We can notice how our proposal using a weight
g4y Of 0.0001 and a step k of 5achieves the best performance with all metrics.

1 1 — SSIM(I;;,1; ) .

/Qap:ﬁZV 5+ (L= = Ll (6)
]

The second term is a smoothness constraint that penalizes large disparity dif-

ferences between neighboring pixels along the z and y directions unless a strong

intensity gradients in the reference image I occurs

1
Lis =1 Zj |0.d;

Finally, by building the generator to output a second disparity map d”, we
can add the term proposed in [I3] as third supervision signal, enforcing left-right
consistency between the predicted disparity maps, d* and d”, for left and right
images:

e~ I10eLiall 15, d; ;|e~ 19w Tisll (7)

1
l i T
Ly, = N E |di,j - di,j-t,-di:,jl (8)
%)

Moreover, estimating d” also enables to compute the three terms for both images
in a training stereo pair.

5 Experimental results

In this section we assess the performance of our proposal with respect to litera-
ture. Firstly, we describe implementation details of our model outlining the archi-
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‘Proposed method] Lower is better Higher is better [

Exp. Method Dataset] Abs Rel Sq Rel RMSE RMSE log Di-all | § <1.25 § < 1.25% § < 1.25%
i) Godard et al. [13] K 0.124  1.388 6.125 0.217  30.272| 0.841 0.936 0.975
MonoGAN K 0.119 1.239 5.998 0.212 29.864| 0.846  0.940 0.976
ii) Godard et al. [13] CS 0.699 10.060 14.445 0.542 94.757 | 0.053 0.326 0.862
MonoGAN Cs 0.668 9.488 14.051 0.526 94.092| 0.063 0.394 0.876
iii) Godard et al. [13] CS+K | 0.104 1.070  5.417 0.188 25.523 | 0.875 0.956 0.983
MonoGAN CS+K | 0.102 1.023 5.390 0.185 25.081| 0.878 0.958 0.984
iv) |Godard et al. [13] + pp| CS+K | 0.100 0934 5.141 0.178 25.077| 0.878 0.961 0.986
MonoGAN + pp CS+K | 0.098 0.908 5.164 0.177 23.999| 0.879 0.961 0.986

Table 1. Results on KITTI stereo 2015 [30]. We compare MonoGAN with [I3] using
different training schedules, respectively only KITTI sequences (K), only CityScapes
(CS) and both sequentially (CS+K). Adversarial contribution always improves the
results. We indicate with pp results obtained after applying the final post-processing
step proposed in [13].

tecture of generator and discriminator networks. Then, we describe the training
protocols followed during our experiments reporting an exhaustive comparison
on KITTT 2015 stereo dataset [30] with state-of-the-art method [I3]. This eval-
uation clearly highlights how the adversarial formulation proposed is beneficial
when tackling this unsupervised monocular depth estimation. Moreover, we com-
pare our proposal with other frameworks known in literature, both supervised
and unsupervised, on the split of data used by Eigen et al. [6]. In this latter
case we provide experimental results on the standard Eigen split as well as on
a similar one made of more reliable data. This evaluation highlights once again
the effectiveness of our proposal.

5.1 Implementation Details

For our GAN model, we deploy a VGG-based generator as in [I13] counting 31
million parameters. We designed the discriminator in a similar way but, since
the task of the discriminator is easier compared to the one tackled by the gen-
erator, we reduced the amount of feature maps extracted by each layer by a
factor of two to obtain a less complex architecture. In fact, it counts about 8
million parameters, bringing the total number of variables of the overall frame-
work to 39 million at training time. At test time, the discriminator is no longer
required, restoring the same network configuration of [I3] and thus the same
computational efficiency.

For a fair comparison, we tune hyper-parameters such as learning rate or
weights applied to loss terms to match those in [I3], trained with a multi-scale
data term while the adversarial contribution is computed at full resolution only.
Being the task of D easier compared to depth estimation performed by G, we
interleave the updates applied to the two. To this aim we introduce a further
hyper-parameter k as the ratio between the number of training iterations per-
formed on G and those on D, in addition to agg4,. In other words, discrimina-
tor weights are updated only every k updates of the generator. We will report
evaluations for different values of parameter k. To jointly train both generator
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Proposed method” Lower is better Higher is better ‘

Method cap |Dataset| Abs Rel Sq Rel RMSE RMSE log| 6 <1.25 § < 1.25% § < 1.25°
Zhou et al. [54] 80 m| CS+K | 0.198 1.836  6.565 0.275 0.718 0.901 0.960
Mahjourian et al. [27] |80 m| CS+K | 0.159 1.231  5.912 0.243 0.784 0.923 0.970
Yin et al. [A7] 80 m| CS+K | 0.153 1.328  5.737 0.232 0.802 0.934 0.972
Wang et al. [42] 80 m| CS+K | 0.148 1.187  5.496 0.226 0.812 0.938 0.975
Poggi et al. [32] (200) |80 m| CS+K | 0.146 1.291  5.907 0.245 0.801 0.926 0.967
Godard et al. [I3] |80 m| CS+K | 0.124 1.076  5.311 0.219 0.847 0.942 0.973
MonoGAN 80 m| CS+K | 0.124 1.055  5.289 0.220 0.847 0.942 0.973
Godard et al. [I3] + pp|80 m| CS+K | 0.118 0.923 5.015 0.210 0.854 0.947 0.976
MonoGAN + pp |80 m| CS+K | 0.118 0.908 4.978 0.210 0.855 0.948 0.976
Garg et al. [10] 50m| K 0.169 1.080  5.104 0.273 0.740 0.904 0.962
Zhou et al. [54] 50 m| CS+K | 0.190 1.436  4.975 0.258 0.735 0.915 0.968
Mahjourian et al. [27] |50 m| CS+K | 0.151 0.949  4.383 0.227 0.802 0.935 0.974
Poggi et al. [32] (200) |50 m| CS+K | 0.138  0.937  4.488 0.230 0.815 0.934 0.972
Godard et al. [I3] |50 m| CS+K | 0.117  0.762  3.972 0.206 0.860 0.948 0.976
MonoGAN 50 m| CS+K | 0.118 0.761 3.995 0.208 0.860 0.949 0.976
Godard et al. [I3] + pp|50 m| CS+K | 0.112  0.680 3.810 0.198 0.866 0.953 0.979
MonoGAN + pp |50 m| CS+K | 0.112 0.673 3.804 0.198 0.868 0.953 0.979

Table 2. Results for unsupervised techniques on the original Eigen et al. [6] split based
on raw Velodyne data.

and discriminator we use two instances of Adam optimizer [19], with 8; = 0.9,
B2 = 0.99 and € = 10~8. The learning rate is the same for both instances: it is set
at A = 10~ for the first 30 epochs and then halved each 10 epochs. Number of
epochs is set to 50 as for [13]. Training data are extracted from both KITTI raw
sequences [30] and CityScapes dataset [3] providing respectively about 29000
and 23000 stereo pairs, these latter samples are cropped to remove lower part of
the image frames (depicting a portion of the car used for acquisition) as in [I3].
Moreover, as in [13] we perform data augmentation by randomly flipping input
images horizontally and applying the following transformations: random gamma
correction in [0.8,1.2], additive brightness in [0.5,2.0], and color shifts in [0.8,1.2]
for each channel separately. The same procedure is applied before forwarding
images to both generator and discriminator.

5.2 Hyper-parameters analysis

As mentioned before, our GAN model introduces two additional hyper-parameters:
the weight a4, applied to the adversarial loss acting on the generator and the
iteration interval k£ between subsequent updating applied to the discriminator.
Figure {4 reports an analysis aimed at finding the best configuration (g, k).
On each plot, we report an evaluation metric used to measure accuracy in the
field of monocular depth estimation (e.g., in [I3]) as a function of both g, and
k. Respectively, on top we report from left to right Abs Rel, Sq Rel and RMSE
(lower scores are better), on bottom § < 125, § < 1252 and § < 1253 (higher
scores are better). These results were obtained training MonoGAN on the 29000
KITTI stereo images [30], with a4q4, set to 0.01, 0.001 and 0.0001 and & to 1, 5
and 10, for a total of 9 models trained and evaluated in Figure 4] We can notice
how the configuration a,q4,=0.0001 and k=5 achieves the best performance with
all evaluated metrics. According to this analysis we use these hyper-parameters
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(a) (b)

Fig. 5. Qualitative comparison between (a) reprojected raw Velodyne points as done
in the original Eigen split for results reported in Table [2| and (b) reprojected ground-
truth labels filtered according to [40], available on the KITTI website, deployed for our
additional experiments reported in Table [3} Warmer colors encode closer points.

in the next experiments, unless otherwise stated. It is worth to note that despite
the much smaller magnitude of a4, compared to weights oy, ags and ag, in
data term , its contribution will affect significantly depth estimation accuracy
as reported in the remainder.

5.3 Evaluation on KITTI dataset

Table [1] reports experimental results on the KITTI 2015 stereo dataset. For this
evaluation, 200 images with provided ground-truth disparity from KITTI 2015
stereo dataset are used for validation, as proposed in [13]. We report results for
different training schedules: running 50 epochs on data from KITTT only (K),
from CityScapes only (CS) and 50 epochs on CityScapes followed by 50 on KITTI
(CS+K). We compare our proposal to state-of-the-art method for unsupervised
monocular depth estimation proposed by Godard et al. [I3] reporting for this
method the outcome of the evaluation available in the original paper. Table
is divided into four main sections, representing four different experiments.
In particular, i) compares MonoGAN with [I3] when both trained on K. We
can observe how our framework significantly outperforms the competitor on all
metrics. Experiment ii) concerns the two models trained on CityScapes data
[3] and evaluated on KITTT stereo images, thus measuring the generalization
capability across different environments. In particular, CityScapes and KITTI
images differ not only in terms of scene contents but also for the camera setup.
We can notice that MonoGAN better generalizes when dealing with different
data. In iii), we train both models on CityScapes first and then on KITTI,
showing that MonoGAN better benefits from using different datasets at training
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Proposed method” Lower is better Higher is better ‘

Method cap |Dataset| Abs Rel Sq Rel RMSE RMSE log| 6 <1.25 § < 1.25% § < 1.25°
Godard et al. [I3] ({80 m| CS+K | 0.097  0.728  4.279 0.151 0.898 0.973 0.991
MonoGAN 80 m| CS+K | 0.096 0.699 4.236 0.150 0.899 0.974 0.992

Godard et al. [I3] 4+ pp|80 m| CS+K | 0.092 0.596  3.977 0.145 0.902 0.975 0.992
MonoGAN +pp |80 m| CS+K | 0.090 0.566 3.911 0.143 0.906 0.977 0.993
Godard et al. [13] 50 m| CS+K | 0.095 0.607 4.100 0.149 0.896 0.975 0.992
MonoGAN 50 m| CS+K | 0.094 0.600 4.110 0.148 0.897 0.976 0.993
Godard et al. [13] + pp|50 m| CS+K | 0.091 0.544  3.996 0.145 0.899 0.976 0.993
MonoGAN + pp |50 m| CS+K | 0.089 0.522 3.958 0.143 0.902 0.978 0.994

Table 3. Results for MonoGAN and Godard et al. [13] on 93.5% of Eigen et al. [6] split
using accurate ground-truth labels [40] recently made available by KITTI evaluation
benchmark.

time compared to [13] thus confirming the positive trend outlined in the previous
experiments. Finally, in iv) we test the network trained in iii) refining the results
with the same post-processing step described in [I3]. It consists in predicting
depth for both original and horizontally flipped input image, then taking 5%
right-most pixels from the first and 5% left-most from the second, while averaging
the two predictions for remaining pixels. With such post-processing, excluding
one case out of 6 (i.e., with the RMSE metric) MonoGAN has better or equivalent
performance compared to [13]. Overall, the evaluation on KITTI 2015 dataset
highlights the effectiveness of the proposed GAN paradigm. In experiments iii)
and iv), we exploited adversarial loss only during the second part of the training
(i.e., on K) thus starting from the same model of [13] trained as in experiment
ii), with the aim to assess how the discriminator improves the performance of
a pre-trained model. Moreover, when fine-tuning we find beneficial to change
the agq, weight, similarly to traditional learning rate decimation techniques. In
particular, we increased the adversarial weight a4, from 0.0001 to 0.001 after
150k iterations (out of 181k total).

5.4 Evaluation on Eigen split

We report additional experiments conducted on the split of data proposed by
Eigen et al. in [6]. This validation set is made of 697 depth maps obtained by
projecting 3D points inferred by a Velodyne laser into the left image of the ac-
quired stereo pairs in 29 out of 61 scenes. The remaining 32 scenes are used to
extract 22600 training samples. We compare to other monocular depth estima-
tion framework following the same protocol proposed in [I3] using the same crop
dimensions and parameters.

Table [2| reports a detailed comparison of unsupervised methods. On top, we
evaluated depth maps up to a maximum distance of 80 meters. We can observe
how MonoGAN performs on par or better than Godard et al. [I3] outperforming
it in terms of Sq Rel and RMSE errors and § < 1.25, § < 1.252 metrics. On the
bottom of the table, we evaluate up to 50 meters maximum distance to compare
with Garg et al. [I0]. This evaluation substantially confirms the previous trend.
As for experiments on KITTI 2015 stereo dataset, we find out that increasing by
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a factor 10 the adversarial weight a4, from 0.0001 to 0.001 after 150k iterations
out of 181k total increases the accuracy of MonoGAN. Apparently, the margin
between MonoGAN and [13] is much lower on this evaluation data. However,
as already pointed out in [13] and [40], depth data obtained through Velodyne
projection are affected by errors introduced by the rotation of the sensor, the
motion of the vehicle and surrounding objects and also incorrect depth readings
due to occlusion at object boundaries. Therefore, to better assess the perfor-
mance of our proposal with respect to state-of-the-art we also considered the
same split of images with more accurate ground-truth labels made available by
Uhrig et al. [40] and now officially distributed as depth ground-truth maps by
KITTI benchmark. These maps are obtained by filtering Velodyne data with
disparity obtained by the Semi Global Matching algorithm [I5] so as to remove
outliers from the original measurements. Figure[5]shows a qualitative comparison
between depth labels from raw Velodyne data reprojected into the left image,
deployed in the original Eigen split, and labels provided by [40], deployed for
our additional evaluation. Comparing (a) and (b) to the reference image at the
top we can easily notice in (a) several outliers close to the tree trunk border not
detectable in (b). Unfortunately, accurate ground-truth maps provided by [40]
are not available for 45 images of the original Eigen split. Therefore, the number
of testing images is reduced from from 697 to 652. However, at the expense of a
very small reduction of validation samples (i.e., 6.5%) we get much more reliable
ground-truth data according to [40]. With such accurate data, Table [3| reports
a comparison between [I3] and MonoGAN with and without post-processing,
thresholding at 80 and 50 meters as for previous experiment on standard Eigen
split. From Table [3] we can notice how with all metrics, excluding one case,
MonoGAN on this more reliable dataset outperforms [I3] confirming the trend
already reported in Table [I] on the accurate KITTI 2015 benchmark.

6 Conclusions

In this paper, we proposed to tackle monocular depth estimation as an image
generation task by means of a Generative Adversarial Networks paradigm. Ex-
ploiting at training time stereo images, the generator learns to infer depth from
the reference image and from this data to generate a warped target image. The
discriminator is trained to distinguish between real images and fake ones gener-
ated by the generator. Extensive experimental results confirm that our proposal
outperforms known techniques for unsupervised monocular depth estimation.
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