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Abstract. The stixel-world is a compact and detailed environment rep-
resentation specially designed for street scenes and automotive vision
applications. A recent work proposes a monocamera based stixel esti-
mation method based on the structure from motion principle and scene
model to predict the depth and translational motion of the static and
dynamic parts of the scene. In this paper, we propose to exploit the re-
cent advantages in deep learning based single image depth prediction for
mono-stixel estimation. In our approach, the mono-stixels are estimated
based on the single image depth predictions, a dense optical flow field and
semantic segmentation supported by the prior knowledge about the char-
acteristic of typical street scenes. To provide a meaningful estimation, it
is crucial to model the statistical distribution of all measurements, which
is especially challenging for the single image depth predictions. Therefore,
we present a semantic class dependent measurement model of the single
image depth prediction derived from the empirical error distribution on
the Kitti dataset.
Our experiments on the Kitti-Stereo’2015 dataset show that we can sig-
nificantly improve the quality of mono-stixel estimation by exploiting
the single image depth prediction. Furthermore, our proposed approach
is able to handle partly occluded moving objects as well as scenarios
without translational motion of the camera.

Keywords: mono-stixel, single image depth prediction, scene recon-
struction, scene flow, monocamera, automotive

1 Introduction

Autonomous vehicles and driver assistance systems need to understand their en-
vironment including a geometric representation of the distances and motions as
well as a semantic representation of the classification of each object. Addition-
ally, to reduce the computational effort for higher-level vision applications, this
representation should be compact.

Therefore, the stixel-world was introduced by Badino et al. [1] and extended
to a multi-layer stixel-world by Pfeiffer et al. [21]. The stixel-world represents
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Fig. 1. Example depth prediction of our mono-stixel estimation. Top to bottom: image,
ground truth depth, and our mono-stixel depth estimation. The color encodes the
inverse depth from close (red) to far (dark blue). The ego vehicle is standing in the
images of the third and fourth column. By exploiting the single image depth prediction
our mono-stixel estimation approach provides reliable depth estimates even for partly
occluded vehicles and scenarios without translational motion of the camera.

the scene as a composition of thin stick like elements, the stixels. Each stixel
corresponds to a vertical rectangle in the image and stores the distance to the
camera assuming an upright orientation of object stixel and lying orientation of
ground stixel. Additionally to the type, segmentation and distance each stixel
segment can consist of a label for the semantic class [23] and the motion of each
stixel can be estimated using a Kalman-filter based tracking approach [20]. The
mentioned works use stereo depth measurements to estimate the stixel-world.
A recent work by Brickwedde et al. [2] presents the mono-stixel approach, a
monocamera based stixel-model and estimation method. The mono-stixel model
directly estimates the 2D-translational motion of each stixel as part of the seg-
mentation problem and introduces a further mono-stixel type by distinguishing
static and potentially moving object stixel. The mono-stixels are estimated based
on a dense optical flow field and semantic segmentation leveraging the structure
from motion principle for the static environment and the scene model assump-
tion that moving objects stand on the ground plane. However, there are two
limitations of the mono-stixel estimation approach in [2]. First, a translational
motion of the camera is required. Second, the projection of a potentially moving
object stixel on the ground plane only works as long as this part of the object
really stands on the ground, the ground contact point is not occluded and the
surface of the ground plane is estimated with high quality.

To overcome these limitations and improve the quality, we propose to exploit
a deep learning based single image depth prediction for mono-stixel estimation
as a further information. Thereby, the mono-stixel estimation serves as a fusion
of an optical flow field, single image depth prediction and semantic segmen-
tation supported by scene model assumptions. By exploiting the single image
depth prediction the approach is able to handle partly occluded objects and a
translational motion of the camera is not required anymore as shown in figure
1.
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2 Related work

Traditionally stixel estimation methods use stereo depth measurements like [1,
21]. Levi et al. [15] and Garnett et al. [9] propose a convolutional neural net-
work, called the Stixel-Net for a monocamera based stixel estimation method.
The convolutional neural network predicts the segment and depth of the closest
stixel in each column, but does not provide a depth representation of the whole
image and is more related to a freespace segmentation method. As discussed in
the introduction, the mono-stixel approach by Brickwedde et al. [2] is highly
related to our approach as a multi-layer mono-stixel estimation based on the
structure from motion or multi-view geometry principle [12]. The 3D-position of
static points in the scene can be reconstructed based on the image correspon-
dences and the camera motion by triangulation. For example, SLAM methods
like [18] and [5] jointly estimate the camera motion and image correspondences
including their 3D-position in the scene. In general, this reconstruction is only
known up to an unknown scale of the scene and camera motion in a mono-
camera setup. However, in autonomous applications the unknown scale can be
estimated based on the known camera height above the ground [6, 19] or derived
from an inertial measurement unit. But, there are still limitations of the struc-
ture from motion principle for moving objects or scenarios without translational
motion of the camera. By exploiting the epipolar geometry or scene constraints
some independent moving objects (IMO) are detectable based on the optical
flow and camera motion [14, 22]. But some IMOs like oncoming vehicle are still
not detectable. Therefore, the mono-stixel estimation approach in [2] proposes to
distinguish static and potentially moving objects like vehicles based on a seman-
tic segmentation. To reconstruct these objects some methods [2, 22] exploit the
scene model assumption that these objects are connected with the surrounding
static environment, for example, that a vehicle stands on the ground plane.

In the recent years, deep learning methods show impressive results for pre-
dicting the depth of the scene for a single image. Thus, these methods exploit
totally different information than the multi-view approaches. These methods po-
tentially learn the typical shape and size of objects and structures as well as the
contextual information. One of the pioneering work is presented by Eigen et al.
[4]. They propose a supervised learning approach for single image depth predic-
tion, but it can also be trained in an unsupervised or self-supervised manner [30,
8, 11]. Providing additionally the statistical distribution of the predicted depth
is still challenging. Kendall and Gal [13] distinguish two types of uncertainties:
the aleatoric uncertainty, that refers to sensor noise and can not be reduced even
with more training data and the epistemic or model uncertainty that could be
explained away given enough training data. They propose to learn to predict the
aleatoric uncertainty as part of a supervised learning approach and use Monte
Carlo dropout to derive the epistemic uncertainty.

Single-view and multi-view depth predictions exploit totally different infor-
mation with different benefits and drawbacks. This makes it powerful to fuse both
depth prediction approaches [25, 7]. Alternatively, the methods [28, 27] propose
to learn the multi-view and structure from motion principle directly. Thereby,
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the convolutional network can additionally exploit the single-view depth cues
and seen as a fusion as well.

The contributions of our work are as follows: We present a mono-stixel es-
timation that fuses single image depth predictions with a dense optical flow
field and semantic segmentation. Thereby, we significantly outperform previous
mono-stixel estimation methods and overcome two main limitations. Our mono-
stixel estimation method is able to provide reliable depth estimates even for
scenarios without translational motion of the camera and is able to reconstruct
moving objects even if the ground contact point is occluded. Furthermore, our
approach can be seen as a fusion scheme that is supported by a semantic seg-
mentation and scene model assumptions. For a statistical meaningful fusion, it
is crucial to know the error distribution, which is especially challenging for the
single image depth predictions. Therefore, we present a semantic class depen-
dent measurement model for the single image depth prediction derived from the
empirical error distribution on the Kitti dataset [17]. This analysis additionally
gives some insights which parts of the scene are challenging for single image
depth prediction.

3 Method

In this chapter, we present our mono-stixel estimation method. We mainly follow
the mono-stixel model and segmentation algorithm proposed by Brickwedde et
al. [2]. In the first section, we give a brief overview of that method and present
how to adapt it to exploit the single image depth prediction for mono-stixel
estimation. Thereby, our mono-stixel approach uses a pixel-wise semantic seg-
mentation, dense optical flow field, and single image depth prediction as inputs.
Furthermore, the camera motion is assumed to be known. In the second chapter,
we derive a measurement model of the single image depth prediction based on
the error statistic on the Kitti-Stereo’15 dataset [17]. Finally, the last chapter
presents how to solve the mono-stixel segmentation problem.

3.1 Mono-stixel segmentation as energy minimization problem

We follow the mono-stixel model proposed in [2] that defines a mono-stixel as
a thin stick-like planar and rigid moving element in the scene. To represent the
whole scene the image of width w and height h is divided into columns of a fixed
width ws and each column k is segmented into Nk mono-stixels separately:

sk = {si | 1 ≤ i ≤ Nk ≤ h}
with si = (vbi , v

t
i , ci, pi, ti,mi)

(1)

Each mono-stixel si consists of labels for the segmentation, represented by the
bottom vbi and top vti point in that column, a label for the semantic class ci, labels
to encode the inverse depth pi and 2D-translational motion over the ground ti
and is of a given mono-stixel type mi. The four mono-stixel types mi are ground,
static object, dynamic object, and sky stixel as defined in [2]. Each semantic class
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ci is directly associated with one mono-stixel type mi. Thus, a ground stixel
could be of the semantic class road, sidewalk or terrain, a static object stixel
could be of the semantic class building, pole or vegetation, a dynamic object
stixel could be of the type vehicle, two-wheeler or person and the sky stixels
are of the semantic class sky. Furthermore, assumptions of the geometry and
motion are defined for each stixel type. A ground stixel has a lying orientation,
an object stixel has an upright orientation facing the camera center and a sky
stixel is at infinite distance pi = 0. The dynamic object stixel is the only type
with independent motion, the other stixel types are assumed to be static ti = 0.

The mono-stixel segmentation is defined as a 1D-energy minimization prob-
lem [2] for each column k:

ŝ = argmin
s

E(s, f , l)

= argmin
s

(Ψ(s) + Φ(s, f , l,d)) , (2)

where Ψ(s) represents the prior knowledge of the typical structure of street
scenes. It consists of a gravity prior to encode that most of the objects typically
stand on the ground plane, an ordering constraint to regard that one object
might occlude another one and a flat ground plane prior which prefers small
discontinuities of the height in the ground plane. Additionally, a constant value
is added for each new stixel to prevent over-segmentation and regulates the model
complexity. To model the scene prior we follow exactly the same equations as
defined in [2] and refer the interested reader to that paper.

The data likelihood Φ(s, f , l,d) rates the consistency of the stixel hypothesis
based on the semantic segmentation l, the optical flow f and single image depth
prediction d:

Φ(s, f , l,d) =

Nk
∑

i=1

vt

i
∑

v=vb

i

(λLΦL(si, lv) + λFΦF (si, fv, v) + λSIΦSI(si, dv)) (3)

The probability is assumed to be independent across the rows v in that col-
umn and each data likelihood term is weighted by λ. The data likelihood terms
ΦL(si, lv) and ΦF (si, fv, v) are defined as in [2]: ΦL(si, lv) prefers stixels having
a semantic class ci with high class scores lv(ci) in the semantic segmentation
and ΦF (si, fv, v) rates the consistency of the stixel based on the optical flow fv .
Therefore, the expected optical flow fexp,v(si) at row v given a stixel hypothesis
si is computed based on its inverse depth, relative motion to the camera and
orientation defined by its mono-stixel type. This computation can be expressed
by a stixel-homography [2]. The data likelihood ΦF (si, fv, v) rates the difference
between the expected fexp,v(si) and measured optical flow fv as the negative log-
arithm of the measurement model which is defined as a mixture model consisting
of a normal distribution for inliers and a uniform distribution for outliers.

We propose to extend the data likelihood for the input of the single image
depth prediction by ΦSI(si, dv). The output of our single image depth prediction
is defined as a dense disparity map with dv = 1

Zv

, where Zv is the z-coordinate of
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the 3D-position in camera coordinates. The data likelihood rates the difference
between expected disparity dexp,v(si) of the corresponding stixel hypothesis si
and the disparity measurement dv of single image depth prediction for the pixel
at row v. The expected disparity dexp,v(si) of the stixel hypothesis si is defined
by the inverse depth pi and stixel type mi as:

dexp,v(si) =

{

pi(x·ni)
xz

, if mi ∈ {static object, dynamic object, ground}
0 , if mi = sky

(4)
where x is the ray of the pixel corresponding to row v and ni is the normal
vector defined by the orientation of the mono-stixel type mi.

The measurement model of the single image depth prediction derived in the
next section defines the statistical distribution of a disparity error dependent on
the semantic class p(derror|c). Switching to the log-domain ΦSI(si, dv) is defined
as the negative logarithm of this probability:

ΦSI(si, dv) = − log (p(dv − dexp,v(si)|ci))
= − log (p(derror,v|ci)) (5)

3.2 Measurement model of single image depth prediction

To achieve a high performance of the mono-stixel estimation and meaningful
fusion with the optical flow, it is crucial to model the statistical distribution
of the disparity error of the single image depth prediction. Supervised learning
methods are limited to the ground truth provided by the sensor which is typically
limited by a certain range and view. For example, the Velodyne sensor in the
Kitti dataset [17] only provides ground truth up to around 80 meters and only
for the lower part of the image. Consequently, we propose to use a self-supervised
learning method and follow the approach of Godard et al. [11] . However, this
method does not provide uncertainties of the predicted depth and the aleatoric
uncertainty estimation presented by Kendall and Gal [13] is not applicable for a
self-supervised learning approach.

Therefore, to derive a measurement model we analyzed the empirical error
distribution of the single image depth prediction approach by [11] on the Kitti
dataset [17]. The error distribution shown in figure 2 mainly consists of two
parts. First, a part with slowly decreasing tails that mainly models the distribu-
tion of large errors and has a triangular shape on a logarithmic scale. Second,
one part that corresponds to a peak and high probabilities for small errors. To
approximate this characteristic of the empirical density function we propose a
mixture model that consists of a Laplacian distribution that mainly models the
probability of large errors and a Gaussian distribution mainly for the low errors:

p(derror) =
1− λ√
2πσ

e
−d

2
error

2σ2 +
λ

2b
e−

|derror|
b (6)

Figure 2 shows the approximated density function as an orange line for σ =
0.0042, b = 0.02 and λ = 0.2.
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Fig. 2. Statistical distribution of the disparity error of the single image depth prediction
[11]. The blue histograms show the empirical distribution of the error on Kitti-Stereo’15
[17] and the orange curve the approximated measurement model. The distribution is
shown with a logarithmic scale of the frequency in the right diagram.

Furthermore, we identified that the error distribution highly depends on the
semantic class as shown in figure 3. Especially roads, sidewalks, and vehicles
work quite well. These classes follow strict model assumptions regarding sur-
face, shape or size and are frequently represented in the training dataset. This
observation motivates to model a class dependent measurement model. There-
fore, we estimate the parameters σci , bci and λci separately for each class as
shown in table 1, which correspond to the density functions in figure 3 colored
in orange.

Table 1. Class-dependent measurement model of single image depth prediction

Class ci Road Sidewalk Terrain Building Pole Vegetation Vehicle

σci
0.0032 0.006 0.007 0.0075 0.008 0.008 0.005

bci 0.01 0.02 0.02 0.025 0.03 0.03 0.015

λci
0.15 0.1 0.1 0.2 0.3 0.3 0.2

For the semantic classes two-wheeler, person and sky there is not enough data
for a reliable analysis of the statistical distribution. Therefore, we use the overall
distribution in figure 2 for these classes. Based on the derived class dependent
measurement model the term ΦSI(si, dv) in equation 5 is defined as:

ΦSI(si, dv) = − log (p(derror|ci))
≈ min

(

− log
(

1−λci√
2πσci

)

+
d2
error

2σ2
ci

, − log
(

λci

2bci

)

+ |derror|
bci

)

(7)

3.3 Solving the mono-stixel segmentation problem

The mono-stixel segmentation problem is defined as the energy minimization
problem in equation 2. To solve this segmentation problem we follow the pro-
posed method in [2]. The optimization of the stixel types mi and segmentation
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Fig. 3. Statistical distribution of the disparity error of the single image depth predic-
tion [11] dependent on the semantic class. The blue histograms show the empirical
distribution of the error on Kitti-Stereo’15 [17] and the orange curve the approximated
measurement model.
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labels vbi , v
t
i is formulated as a minimum path problem solved via dynamic pro-

gramming. Each edge in the minimum path problem corresponds to a mono-stixel
hypothesis of a given segmentation vbi , v

t
i and type mi. To reduce the computa-

tional effort the semantic class ci, inverse depth pi and translational motion ti are
locally optimized for the corresponding image segment. We take that semantic
class ci that minimized ΦL(si, lv) considering the association between semantic
classes and the mono-stixel type mi. Thereby, the semantic segmentation sup-
ports the segmentation as well as the distinction of the different mono-stixel
types.

To estimate the inverse depth pi and translational motion ti we use a MLESAC-
based approach [26] which, in contrast to the approach in [2], minimizes the
optical flow as well as the single image depth prediction based data likelihood
and serves as a statistical fusion:

p̂i, t̂i = argmin
pi,ti

vt

i
∑

v=vb

i

(λFΦF (si, fv, v) + λSIΦSI(si, dv)) (8)

For static objects and ground stixels both data likelihood terms depend solely on
the inverse depth pi as the translational motion ti is zero by definition. There-
fore, the MLESAC-based estimation serves as a fusion and takes that inverse
depth defined by one optical flow vector or one single image depth estimate in
the corresponding image segment vbi , v

t
i that minimizes the cost term defined

in equation 8. For dynamic object stixel the optical flow related-data likelihood
term depends on two degrees of freedom, namely the linear combination of in-
verse depth and relative 2D-translation of that stixel to the camera t̃i = piti,cam
as shown in [2]. But one degree of freedom, for example, the inverse depth pi
can be chosen freely. In contrast to that, the data likelihood term of the single
image depth prediction only depends on the inverse depth pi of the stixel, but
is independent of the translational motion. Consequently, we separate the esti-
mation in two parts. First, we take that inverse depth pi defined by one single
image depth estimate in the corresponding image segment vbi , v

t
i , that minimizes

the following cost term:

p̂i = argmin
pi

vt

i
∑

v=vb

i

(λSIΦSI(si, dv)) (9)

Second, we take that labels for the translational motion ti defined by one optical
flow vector in the corresponding image segment vbi , v

t
i that minimizes the optical

flow based data likelihood for the given depth p̂i:

t̂i = argmin
ti

vt

i
∑

v=vb

i

(λFΦF (si, fv, v)) (10)

A hypothesis of the 2D-translational motion or inverse depth based on one optical
flow vector can be estimated using the direct linear transform of the stixel-
homography as explained in [2]. For each single image depth estimate, we can
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derive a hypothesis of the inverse depth of a stixel given its type by the inversion
of equation 4. The scene model additionally rates the consistency of the estimated
depth during optimization as a minimum path problem and prefers a mono-stixel
segmentation consistent to the defined scene model.

4 Experiments

In this chapter, the performance of our proposed mono-stixel estimation method
is analyzed. First, we describe our experimental setup including the used metric.
Second, we present the experimental results of our performance evaluation as
well as some example results.

4.1 Setup and metric

The inputs of our method, the dense optical flow field, camera motion estimation,
pixel-wise semantic labeling, and single image depth prediction are implemented
as follows: For the dense optical flow we use the public available DeepFlow [29],
the camera motion is provided by the method described in [10] and for the single
image depth prediction we use the method proposed by Godard et al. [11] as
discussed in section 3.2. For the semantic segmentation, we train our own fully
convolutional network [16] based on the VGG-architecture [24]. We pretrain the
network on the cityscape dataset [3] and fine-tune it on 470 annotated images
of the Kitti dataset [17] as proposed in [23, 2].

Our experiments are performed on the Kitti-Stereo’15 dataset [17]. The
dataset consist of 200 short sequences in street scenes with ground truth depth
maps provided by a Velodyne laser scanner and 3D-CAD models for moving
vehicles. In the first setup the optical flow and camera motion is computed on
keyframes with a minimum driven distance of 0.5m. These keyframes exist for
171 sequences. In the second setup, the optical flow and camera motion is com-
puted on two consecutive images for all 200 sequences. This means that in the
second setup also scenarios without or with a quite small translational motion
of the camera are included in the dataset.

As a first baseline, we use the mono-stixel estimation approach described in
[2] with the same optical flow and camera motion estimation as inputs. Com-
paring to that baseline shows if we can improve the performance of mono-stixel
estimation by exploiting the single image depth predictions. The implemented
baseline is exactly the approach described in [2]. However, due to some parameter
tuning, we were able to achieve slightly better results than stated in the origi-
nal paper. The baseline approach and our approach both use a stixel width of
ws = 5 and exactly the same parameters, for example, to define the scene model.
Furthermore, we present the performance of both inputs to analyze if our ap-
proach serves as a suitable fusion of both information. Therefore, we implement
a traditional structure from motion (SFM) approach [12] by triangulating each
optical flow vector based on the camera motion. Again, the same optical flow
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Image Mono-Stixel - Semantics Mono-Stixel - Depth

Fig. 4. Example depth and semantic scene representation of our proposed mono-stixel
estimation method. The stixel color encodes the semantic class following [3] or the
inverse depth from close (red) to far (dark blue), respectively.

and camera motion are used as for our approach. Additionally, the quality of
the single image depth prediction in [11] is shown.

Moreover, we perform the experiments for three different measurement mod-
els for the single image depth prediction. First, our semantic class dependent
mixture model proposed in section 3.2 (ours-SemMixture). Second, the same
mixture model but independent of the semantic class (ours-Mixture). Third, a
measurement model assuming a normal distribution of the inverse depth error
(ours-Normal). The variance of the normal distribution is determined by the
mean squared error of the inverse depth.

The results are compared using the depth metric by [4]. The metric measures
the root mean squared error (RMSE) of the depth prediction, the mean absolute
relative error (Rel. Error) and percentage of depths that fulfill some threshold
δ. Note, that the metric is computed in the depth space and not in the inverse
depth or disparity space.

4.2 Results

Figure 4 shows some example outputs of our proposed method. The segmentation
of each mono-stixel is visualized by a white boundary and the color represents
the semantic class or depth of that pixel encoded by the mono-stixel.

In figure 5 the performance of the depth representation is compared to the
mentioned baselines. The first image shows that our approach is able to predict
reliable depth estimates even for vehicles partly occluded by the image boundary
or other objects. This is not the case for the mono-stixel approach in [2] that
needs to observe the ground contact point of the mono-stixel for a reasonable
depth estimate. The images in the second and third column show that the fusion
supported by the scene model is able to correct errors of one of the inputs in
many cases. For example, in the second column of figure 5 the depth of the bushes
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Fig. 5. Example performance of the depth reconstruction of our proposed mono-stixel
estimation method compared to the mono-stixel estimation method of Brickwedde et
al. [2], structure from motion (SFM) [12] and single image depth prediction by Godard
et al. [11]. The color encodes the inverse depth from close (red) to far (dark blue).
Invalid negative depth values are colored black. The ego vehicle is standing in the
scenario of the last column.

and building in the right part of the image mainly follows the depth defined by
the optical flow. But, our approach is also able to correct errors in the optical
flow as shown in the third column behind the vehicle or for the guideline on
the right side, even though these are parts of the scene with high parallax.
The last column additionally shows a scenario with standing ego vehicle. The
structure from motion baseline completely fails in that situation, the mono-stixel
approach in [2] reconstructs a flat ground plane, projects the dynamic objects
on that plane, but fails for the static objects, whereas our approach provides a
reasonable depth reconstruction of the whole scene.

Including the single image depth prediction does not have a significant effect
on the number of mono-stixels and thus the compactness of the representation.
The mean number of mono-stixels per image of the approach in [2] is 1853
which corresponds to 7.4 mono-stixels per column. Compared to that our ap-
proach gives out 1944 mono-stixels per image or 7.8 mono-stixels per column
in average. Note, that the parametrization is more focused on quality than on
compactness. By changing the parameter the number of mono-stixel could be re-
duced significantly but at the expense of the quality due to higher discretization
effects.

Table 2 shows the performance of our method compared to the mentioned
baselines for the keyframe-based subset evaluated for all parts of the scene. The
results show that our proposed semantic class dependent measurement model
outperforms the class independent counterpart and especially the measurement
model assuming a normal distribution. Furthermore, our approach significantly
improves the quality of the mono-stixel estimation by exploiting the single image
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Table 2. Results on Kitti-Stereo’15 for the 171 keyframes evaluated on all parts of the
scene

Method RMSE Rel. Error δ < 1.1 δ < 1.25 δ < 1.252 δ < 1.253

SFM [12] 9.36 m 29.11 % 67.02 % 76.81 % 82.21 % 86.02 %
Godard [11] 5.14 m 9.84 % 71.00 % 87.52 % 96.17 % 98.56 %
Mono-Stixel [2] 6.05 m 11.99 % 74.08 % 89.71 % 95.85 % 97.64 %

ours-Normal 4.71 m 8.37 % 79.73 % 92.58 % 97.31 % 98.76 %
ours-Mixture 4.57 m 8.01 % 80.76 % 92.70 % 97.36 % 98.79 %

ours-SemMixture 4.57 m 7.97 % 81.36 % 93.04 % 97.45 % 98.79 %

depth prediction and serves as a suitable fusion, which is shown by the fact, that
the performance is better than each input solely. In table 3 and 4 the same ex-
periment is evaluated for the static and moving parts of the scene separately. For
moving objects the structure from motion baseline fails completely and there-
fore our depth estimation mainly follows the single image depth prediction. Due
to the discretization effect and errors in the semantic segmentation, our perfor-
mance is slightly lower than the single image depth prediction for moving objects.
However, for the whole scene, our approach is significantly better as shown in
Table 2, the representation is more compact and the translational motion of the
moving object stixels is additionally provided. Furthermore, compared to the
mono-stixel estimation approach in [2], we show that our approach significantly
outperforms the scene model-based reconstruction of moving objects.

Table 3. Results on Kitti-Stereo’15 for the 171 keyframes evaluated on static parts of
the scene

Method RMSE Rel. Error δ < 1.1 δ < 1.25 δ < 1.252 δ < 1.253

SFM [12] 7.02 m 16.11 % 76.67 % 87.49 % 92.77 % 94.98 %
Godard [11] 5.38 m 10.26 % 69.32 % 86.23 % 95.78 % 98.43 %
Mono-Stixel [2] 6.01 m 11.20 % 77.54 % 90.81 % 96.03 % 97.71 %

ours-SemMixture 4.51 m 7.79 % 81.29 % 92.63 % 97.37 % 98.81 %

Table 4. Results on Kitti-Stereo’15 for the 171 keyframes evaluated on moving objects

Method RMSE Rel. Error δ < 1.1 δ < 1.25 δ < 1.252 δ < 1.253

SFM [12] 18.51 m 115.17 % 3.12 % 6.15 % 12.36 % 26.71 %
Godard [11] 3.2 m 7.1 % 82.18 % 96.07 % 98.81 % 99.48 %

Mono-Stixel [2] 6.32 m 17.21 % 51.14 % 82.43 % 94.65 % 97.21 %

ours-SemMixture 4.98 m 9.17 % 81.83 % 95.73 % 97.98 % 98.68 %

In table 5 the same experiment is shown, but with the optical flow and cam-
era motion computed on consecutive frames. Thus, there are still many scenarios
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with a moving camera, but also some cases without any or a quite small trans-
lational motion. Consequently, the performance of the SFM and mono-stixel [2]
baselines drop significantly. For example by around 7% and 5% for the accuracy
threshold of δ < 1.1. Our approach is still able to handle situations without
translational motion and thereby the quality only decreases slightly by around
1% for the same accuracy threshold. The small deterioration is explainable by
the fact, that there are lower parallax configurations for the consecutive frames.
However, the optical flow is still useful even in standstill situations to support the
distinction between static and moving objects and to estimate the translational
motion of the moving objects.

Table 5. Results on Kitti-Stereo’15 for the 200 consecutive frames evaluated on all
parts of the scene

Method RMSE Rel. Error δ < 1.1 δ < 1.25 δ < 1.252 δ < 1.253

SFM [12] 16.06 m 59.20 % 59.55 % 69.71 % 76.27 % 81.31 %
Godard [11] 5.20 m 9.68 % 71.63 % 87.91 % 96.25 % 98.58 %
Mono-Stixel [2] 7.26 m 13.90 % 69.68 % 87.09 % 94.53 % 96.80 %

ours-SemMixture 4.88 m 8.24 % 80.27 % 92.60 % 97.28 % 98.73 %

5 Conclusions

We have presented an extension of the mono-stixel estimation by exploiting the
recent advantages in single image depth prediction. The mono-stixel estimation
serves as a statistical fusion of the single image depth prediction and optical
flow supported by scene model assumptions and semantic segmentation. For a
statistically reasonable fusion, we tackle the challenging problem of providing a
statistical error distribution for deep learning based single image depth estimates
in a self-supervised learning approach and proposed a semantic class dependent
measurement model derived by the empirical error distribution.

Our approach is able to significantly improve the quality of mono-stixel esti-
mation and handle partly occluded moving objects as well as scenarios without
translational motion of the camera. Both cases might be highly relevant for a
driver assistance system or autonomous vehicles.
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