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Abstract. The current SLAM algorithms cannot work without assum-
ing rigidity. We propose the first real-time tracking thread for monocular
VSLAM systems that manages deformable scenes. It is based on top of
the Shape-from-Template (SfT) methods to code the scene deformation
model. Our proposal is a sequential method that manages efficiently large
templates, i.e. deformable maps estimating at the same time the camera
pose and deformation. It also can be relocated in case of tracking loss.
We have created a new dataset to evaluate our system. Our results show
the robustness of the method in deformable environments while running
in real time with errors under 3% in depth estimation.
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1 Introduction

Recovering 3D scenes from monocular RGB-only images is a significantly chal-
lenging problem in Computer Vision. Under the rigidity assumption, Structure-
from-Motion (SfM) methods provide the theoretical basis for the solution in
static environments. Nonetheless, this assumption renders invalid for deforming
scenes as most medical imaging scenarios. In the case of the non-rigid scenes the
theoretical foundations are not yet well defined.

We can distinguish two types of algorithms that manage non rigid 3D recon-
struction: Non-Rigid Structure-from-Motion (NRSfM), which are mostly batch
processes, and Shape-from-Template (SfT), which work frame-to-frame. The
main difference between these methods is that NRSfM learns the deformation
model from the observations while SfT assumes a previously defined deformation
model to estimate the deformation for each image.

Rigid methods like Visual SLAM (Simultaneous Localisation and Mapping)
have made headway to work sequentially with scenes bigger than the camera
field of view [16, 7, 13, 8]. Meanwhile, non-rigid methods are mostly focused on
reconstructing structures which are entirely imaged and tracked, for example,
surfaces, [6, 17, 24], faces [4, 25, 2, 20], or articulated objects [23, 15].

We conceive the first real-time tracking thread integrated in a SLAM system
that can locate the camera and estimate the deformation of the surface based
on top of a SfT algorithm following [24, 17, 21, 3]. Our method includes auto-
matic data association and PnP+RANSAC relocalisation algorithm. We code
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the deformable map as a template which consists of a mesh with a deformation
model. Our template is represented as a 3D surface triangular mesh with spa-
tial and temporal regularisers that are rotation and translation invariant. We
have selected it because it is suitable for implementing physical models and with
barycentric coordinates we can relate the observations with the template.

We evaluate our algorithm with experimental validation over real data both
for camera location and scene deformation. This is the first work that focuses on
recovering the deformable 3D just from partial images. Thus, we have created
a new dataset to experiment with partially-imaged template for sake of future
comparison.

2 Problem formulation

2.1 Template definition

We code the deformable structure of the scene as a known template T ⊂ R
3.

The template is modelled as a surface mesh composed of planar triangular facets
F that connect a set of nodes V. The facet f is defined in the frame i by its
three nodes V i

fj
= {V i

f,h} h = 1 . . . 3. The mesh is measured through observable
points X which lie inside the facets. To code a point Xj ∈ X in frame i wrt. its
facet fj nodes, we use a piecewise linear interpolation through the barycentric

coordinates bj = [bj,1, bj,2, bj,3]
⊤

by means of the function ϕ : [R3,R3x3] → R
3:
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The camera is assumed projective, the observable point Xi
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Where Ri ∈ SO(3) and ti ∈ R
3 are respectively the rotation and the trans-

lation of the transformation Ti and {fu, fv, cu, cv} are the focal lengths and the
principal point that define the projective calibration for the camera. The algo-
rithm works under the assumption of previously knowing the template. This is a
common assumption of template methods. We efectivelly compute it by means
of a rigid VSLAM algorithm [16]. We initialise the template from a 3D recon-
struction of the shape surface at rest. We use Poisson surface reconstruction
as it is proposed in [12] to construct the template triangular mesh from the
sparse point cloud. Once the template is generated, only cloud points which lie
close to a facet are retained and then projected into the mesh facets where their
barycentric coordinates are computed.
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3 Optimisation

Fig. 1. Left: Two step region definition for the case of three observations inside two
unconnected facets. dK = 1 for the thickening Ki. Right: Ring of neighbours Nk of the
node K.

We recover the camera pose and the deformation only in the template region
detected by the camera. We define the observation region, Oi, as the template
nodes belonging to a facet with one or more matched observations in the current
image i. We dilate the Oi region with a layer that we call thickening layer, Ki

whose thickness is dK. We call the template region estimated in the local step
local map, Li. It is defined as Li = Oi ∪ Ki (Fig. 1).

We propose the next optimisation to recover both the camera pose Ti and
the position of the local map nodes V i

k ∈ Li, in frame i:

argmin
Ti,V
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The weights of the regularisers λL, λd, λt are defined with respect to a unit
weight for the data term. Additionally, we consider different normalisation fac-
tors to correct the final weight assigned to each term. We consider a correction
depending on the number of addends, denoted as N•, in the summation of the
corresponding regularising term and a scale correction for the temporal term.

The nodes not included in the optimisation, whose position is fixed, V i
k ∈

{T \ Li}, are linked with those optimised, hence they are acting as boundary
conditions. As a consequence most of the rigid motion between the camera and
the template is included in the camera motion estimate Ti.

The regularisers code our deformation model, they are inspired in continuum
mechanics where bodies deform generating internal energies due to normal strain
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and shear strain. The first term is the Cauchy or engineering strain:
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It penalises the normal strain energy. Per each node V i
k we consider a summation

over the ring of its neighbours Nk. Per each neighbour the deformation energy is
computed as proportional to the squared ratio between the distance increment
and the distance at rest. Unlike other isometry or inextensibility regularisers,
[17, 10], it is a dimensionless magnitude, invariant with respect to the facet size.
Per each node V i

k we consider its ring of neighbours Nk in the computation.
The second regulariser is the bending energy:

∑
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It penalises the shear strain energy. It is coded as the squared ratio between
the deflection change and the mean edge length in its ring of neighbours Nk. We
use the ratio in order to get dimensionless magnitude invariant to the facet size.
The deflection δik also represents the mean curvature, it is computed by means
of the discrete Laplace-Beltrami operator:

δik = V i
k −

1
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ωlV
i
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in order to cope with irregular and obtuse meshes, ωl is defined by the so-called
mean-value coordinates [9]:

ωl =
tan(Ω1

k,l/2) + tan(Ω2
k,l/2)

‖V 0
k − V 0

l ‖
(8)

The Ω1
k,l and Ω2

k,l angles are defined in Figure 1.
The last term codes a temporal smoothing between the nodes in Li. This term

is dimensionless with the term S. This term is the average length of the arcs in
the mesh. We optimise with the Levenberg–Marquardt algorithm implemented
in the library g2o [14].

4 SLAM Pipeline

To compose the entire tracking thread, we integrate the optimisation in a pipeline
with automatic data association working with ORB points, and a DBoW keyframe
database [11] that allows relocalisation in case of losing the tracking.

Our optimisation method uses as input the observations of the template
points in the current frame. Specifically, multiscale FAST corner to detect the
observations, and the ORB descriptor [22] to identify the matches. We apply
the classical in VSLAM active matching, that sequentially process the image
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stream. First, the ORB points are detected in the current image. Next, with a
camera motion model, it is predicted the camera pose as a function of the past
camera poses. Then the last template estimate and the barycentric coordinates,
are used to predict where the template points would be imaged. Around the
template point prediction it is defined a search region. Among the ORB points
inside the search region, the one with the closest ORB descriptor is selected
as the observation. We apply a threshold on the ORB similarity to definitively
accept a match. The ORB descriptor of the template point is taken from the
template initialisation. The similarity is estimated as the Hamming distance
between the ORB descriptors. To reduce the number of false negatives, we cluster
the matches according to their geometrical innovation, difference between the
predicted template point in the image and the detected one. Only the three
main clusters of matches are retained.

As an approach of relocalisation algorithm, we use a relaxed rigid PnP +
RANSAC algorithm. We test the original rigid PnP in five thousand images
that contain deformation and we got a recall of 26% successful relocalisation,
with the relaxed method up to a 49%. The precision in the relocalisation is close
to the 100%.

5 Experiments

Comparison with state of the art SfT. We benchmark our proposal with the
standard Kinect paper dataset, to compare the performance of our deformation
model with respect to state-of-the-art template-based algorithms. Kinect paper
dataset is composed of 193 frames, each frame contains around 1300 observations
coming form SIFT points. The matches for the observations are also provided.
The ground truth for the matched points are computed from a Kinect RGB-D
sensor. The benchmark considers a template that can be fit within the camera
field of view. To make an homogeneous comparison we fixed the camera and
leave the boundaries of the mesh free. In table 1 we show the mean RMS error
along the sequence compared with respect to some popular methods [6, 1, 24, 19,
18], results are taken from [19]. Ours gets 4.86 mm at 13 ms per frame, what is
comparable with the similar state-of-the-art algorithms [24, 18].

Experimental validation. To analyse the performance of our system, we have
created the mandala dataset. In this dataset, a mandala blanket is hanged and
deformed manually from its back surface, meanwhile a hand-held RGB-D camera
closely observes the mandala surface mimicking a scanning movement in circles.
Due to the limited field of view of the camera and its proximity to the cloth, the

Table 1. RMSE averaged over all the frames in the sequence.

[6] [1] [19] [24] [18] [5] Ours

Mean RMSE (mm) 3.97 4.56 3.78 7.47 4.82 3.86 4.86

Runtime per Frame (ms) 2 0.7 7 5 30 116 13
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whole mandala is never completely imaged. We run the experiments in a Intel
Core i7-7700K CPU @ 4.20GHz 8 with a 32GB of RAM memory.

The sequence is composed of ten thousand frames, there is a first part for
initialisation where the cloth remains rigid. After that, the level of hardness of
the deformation is progressively increased. The video captures from big displace-
ments in different points of the mandala to wrinkled moments and occlusions.

We evaluate the influence of the thickening layer size, dK. As result of the
experiment, we get a system that can run in real-time and have an RMS error
of 2.30%, 2.22%, and 2.32% for dK = 0, 1 and 2 respectively. When it comes to
runtime, the optimisation algorithm is taking 17, 19 and 20 ms, and the total
times per frame are 39, 40 and 41 ms. With dK=1 we get to reduce the error
without increasing excessively the time.

Fig. 2. From left to right: frames #1347, #2089, #9454, #10739, corresponding to the
shape at rest and different deformations. Top: 2D image Bottom: 3D reconstruction

6 Discussion

We present a new tracking method able to work in deformable environment in-
corporating SfT techniques to a SLAM pipeline. We have developed a full-fledged
SLAM tracking thread that can robustly operate with an average time budged
of 39 ms per frame in very general scenarios with an error under 3% in a real
scene and with a relocalisation algorithm with a recall of a 46% in deformable
environments with a precision close to the 100%.
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