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Abstract. Muscle of human body can be a clue to recognize the behav-
ior and intention of a person. If the muscle activity is measured only by
visual observation, it is useful to estimate the state of the muscle. In this
paper, a method of predicting muscle activity and joint angle of human
body from skin shape is proposed. Since the muscle activity and the joint
angle affect the skin shape, the both factors should be considered simul-
taneously. The proposed method is a learning-based approach that uses
the data set of the skin shape, the muscle activity and the joint angle.
It trains a linear regressor for predicting muscle activity and joint angle
from skin shape. The deformation of skin shape is calculated as the fea-
ture in the active regions, which are extracted from the training data and
limits the regions of the skin shape that contribute to the prediction. We
acquired a lower limb with simple motion to consider the small number
of factors in this paper. In the experiment, the muscle activity and joint
angle are predicted even in the case that the both factors change simulta-
neously. The skin regions that contributes to prediction are given as the
result of learning, and the distribution is reasonable from the viewpoint
of biomechanics.
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1 Introduction

Non-contact visual measurement using cameras can obtain various information
by using the techniques of computer vision. The geometrical information, for ex-
ample, shape and motion, has been one of the major topics. Shape and motion
give useful information, but they are however often not sufficient to understand
the real world. For example, for human-robot interaction, knowing a person’s
muscle activity is useful for robot’s cooperative motion with the person. Mo-
tion planning of picking objects by a robot also would be easier if its physical
properties such as weight and compliance are known in advance.

The physical information, such as muscle activity and weight, requires instal-
lation of additional sensors, for example force sensors, outside the vision system,
while shape and motion are the information that can be directly obtained by
using input images and camera parameters. Since the additional sensors are not
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always available especially in uncontrolled environments, it is beneficial if the
physical information can be obtained by non-contact visual measurement, which
is easier to apply to various situations compared to other systems that require
contact with target objects.

In this paper, we focused on observing the muscle activity as one of the phys-
ical information. If the muscle activity is measured only by visual observation,
it is useful to estimate the force generated by the muscle, and can be a clue
to recognize the behavior and intention of the person. Since humans can esti-
mate physical quantities only from visual clues, this approach is similar to the
inference process of human.

Several visual features can be considered as the clues to estimate the muscle
activity of a person such as the body pose, the articulated motion, and the
muscle bulging. We measure the skin shape to observe the muscle bulging since
it is expected to directly indicate the muscle activity, while the estimation from
pose and motion needs the contact information with the environment.

The skin shape is not only affected by the muscle activity but also by the angle
of the joint to which the muscle is attached. Even if a muscle is not activated,
the length of the muscle changes according to the joint angle because the end
point the muscle moves with the bone. Therefore, it is necessary to consider both
the muscle activity and the joint angle. The question we tackle in this paper is
if it is possible to predict muscle activity and joint angle from skin shape.

The proposed method is a learning-based approach. At the prediction step,
the muscle activity and the joint angle is estimated only from the skin shape
captured by non-contact sensor. At the training step, the data set of skin shape,
muscle activity and joint angle is obtained, and their relationship is learned. The
skin shape is captured by using a range sensor (a.k.a. depth sensor). The muscle
activity is measured by electromyograph (EMG) sensors, which are attached to
the skin above the target muscles, and record the electrical activity produced
by muscles. The joint angle is measured by motion capture (mocap) system.
Although the joint angle can be measured by a vision system without attaching
markers on the human body, we used a mocap system for the accuracy at the
training step.

The contribution of this paper is summarized as follows.

– It is demonstrated that visual measurement of skin shape can be used to
estimate muscle activity and joint angle by a learning-based approach.

– Skin regions that corresponds to the muscles can be detectable as active
regions from the training data set.

– It is succeeded to predict muscle activity, joint angle from skin shapes by
linear regression of the skin deformation in the active region.

2 Related work

The recent techniques of human motion analysis enables the estimation of the
internal joint torque or muscle tension [1, 2]. The joint trajectories can be com-
puted, for example, by using the optical motion capture system which measures
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the trajectories from the markers attached on a human subject [3]. The joint
torques are obtained from the inverse dynamics computation of an articulated
body system, which is almost the same formula as mechanical system [4]. It
usually requires the inertial properties of a human subject, which are estimated
from literature data or identified [5]. The joint torques accentuated by muscles
is extracted by subtracting the external joint torques driven by contact forces.
Though the contact forces are measurable by utilizing some force sensors or force
plates, the multi-contact situation makes it difficult to measure them individ-
ually; the mathematical optimization is often formulated to estimate them [2].
Each muscle tension can be estimated from the actuated joint torque with math-
ematical optimization techniques [2, 6], or be obtained from the combination of
a physiological muscle model [7, 8] and EMG sensors. The mathematical opti-
mization evaluates several physical and physiological terms in order to obtain
one unique solution; however, the accurate estimation requires many reliable
evaluation terms. Though EMG sensors measure individual muscle activation,
they actually cannot be attached on all the muscles. The method using both
mathematical optimization and EMG sensors is also investigated [9].

The articulated motion of human body can be estimated from 2D images
without markers. The detection of 2D joint positions can be done using convo-
lutional neural networks (ConvNets). Toshev et al. [10] first proposed a method
based on ConvNets for detecting human pose i.e., 2D key points representing
joint locations from a single image. Li et al. [11] used ConvNets to directly regress
3D human joints with an image. There are two main reasons for the improve-
ments on accuracy of 3D human pose detection. In biomechanics and robotics,
inverse kinematics has been well-studied and used to generate human pose from
mocap by controlling joint angles. Previous approaches [12, 13] estimated 3D hu-
man pose from 2D key points by combining a statistical model and constraints
such as joint limit [14], segment length [12] and symmetry. Some methods per-
form regression of joint angles or axis angles [15, 16] to estimate angular skeletal
pose using ConvNets but the high nonlinearity prevents us from accurate pre-
diction of joint locations. In this paper, it is assumed that the skeletal pose is
given by mocap or these methods, and we used a mocap system for accuracy in
the experiments.

Skin deformation according to body pose is important factor to generate a
realistic model of human body in computer graphics. The methods of modeling
muscles is classified to three approaches: geometrically-based, physically-based,
and data-driven approaches [17]. The muscle deformation is model from the
range data obtained by a depth camera in [18]. The skin deformation is learned
with respect to the pose and acceleration of body parts by kernel regression in
[19]. Various parts of body are modeled for graphics by simulating muscle and
skin such as face [20], hand [21], lung [22] and upper body [23]. The relationship
between skin shape and muscle force is learned in [24] to predict the force from
skin shape while the skeletal pose is assumed to be fixed.

Skin deformation is based on nonrigid surface registration techniques, which
are classified into three categories in terms of regularization that they use:
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smoothness regularization, isometric regularization and conformal regulariza-
tion. Early approaches [25–28] are based on smoothness regularization. These
techniques are very flexible to deform a template shape largely, but they are
poor at preserving template details and mesh structures. Second, the isometric
(as-rigid-as possible) regularization can preserve original template details and
are commonly used in automatic registration techniques [29–31]. The drawback
of these methods are that they are incapable of handling models with differ-
ent sizes or those which undergo large local stretching. Third, the techniques
based on conformal (as-similar-as possible) regularization [32–34] are proposed
to achieve both flexibility in changing shapes and preservation of mesh structure.
They are based on angle-preserving deformation.

3 Proposed method

We consider the lower limb in this paper to simplify the situation, since some of
the muscles are affected by various factors of multiple joints and muscles around
them if they are attached to the joints of large degree of freedom like shoulder
joints. The muscles of lower limb is related to the ankle joint and the movement
can be controlled as the 1D motion, flexion/extension of the ankle. The motion
of the ankle mainly depends on three muscles, Gastrocnemius, Soleus, Tibialis
anterior muscles. Therefore, we analyze the relationship of the activity of the
first two of these muscles, the ankle joint and the skin shape of lower-limb in
this paper.

3.1 Data acquisition

First, we describe how to acquire the data set to observe lower limb. Fig.1 shows
the setup of the experiment. The skin shape of the lower limb of a subject is
observed by using three range sensors placed around the subject. The range
sensors are based on a projector-camera system [35] and capture the shape of
the visible part from the sensor at 100FPS. The whole shape of the lower limb is
captured by using three range sensors with a technique of reducing the crosstalk
of multiple projected patterns [36]. The shape of the lower limb is reconstructed
by merging range scans by Poisson reconstruction [37]. Fig.2 shows the examples
of the skin shapes. The activity of muscles are low at Pose 1. The subject is
standing on the toe at Pose 2, and the bulging of Gastrocnemius and Soleus
muscles can be observed. The shape of EMGs on the skin is removed from the
range scans and the skin shape is interpolated during merging them.

The joint angle of the ankle is measured by a mocap system. The markers
are attached on the knee, ankle and toe, and the the angle of the ankle joint
is calculated by solving inverse kinematics. We used the mocap system since it
gives accurate and stable results, and estimating the angle without markers is
one of our future work.

The muscle activities of lower limb are calculated from the data measured by
EMG sensors placed on the skin above the muscles. Two EMG sensors are used
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Fig. 1. The setup of the experiment: The skin shape of the lower limb of a subject
is observed by using three range sensors placed around the subject. The joint angle
of the ankle is measured by a mocap system. The muscle activities of lower limb are
measured by EMG sensors placed on the skin above the muscles.

Pose 1 Pose 2

Fig. 2. Two examples of skin shapes: the activity of muscles are low at Pose 1. The
subject is standing on the toe at Pose 2, and the bulging of Gastrocnemius muscle can
be observed.

simultaneously, and they are placed on Gastrocnemius and Soleus muscles. Fig.3
shows an example of the muscle activity and the ankle angle according to the
motion of the lower limb. The muscle activity is defined as the integrated EMG
signal normalized by the signal of the maximal voluntary contraction (MVC) [38].
If it is close to zero, the muscle is relaxed.

3.2 Calculating deformation of skin shapes

The muscle activity affects the skin shape by the deformation of muscle shape
under the skin. Since the skin shapes are acquired by the range scanners frame-
by-frame, the deformation of skin shape is needed to be calculated by finding
the correspondence between the shapes. In this paper, we use a template shape
to compare with each range scan. It is constructed from the one of the relaxed
pose with low muscle activity.
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Fig. 3. The trajectory of muscle activity and ankle angle is shown for an example of the
motion. The muscle activity is calculated from the data measured by a EMG sensor.

In this paper, we used the as-conformal-as possible approach [34] to deform
a template model. This method constrains the transformations of the model as
similarity transformations (scale + rotation) locally as much as possible, which
allows us to fit the model to the target geometry in a flexible way while preserving
the mesh structure with less distortions. The cost function is defined as follows.

E(X) =wASAPEASAP + wClosestEClosest

+ wMarkerEMarker, (1)

where EASAP constrains deformation as similar as possible, and EClosest penal-
izes distances between the closest points of template and target surface. EMarker

is the positional constraint of deformation by using mocap markers to avoid the
shift during deformable registration. Four marker landmarks at the inner/outer
knee and ankle are used. The energy is minimized using the alternating opti-
mization technique where the first step optimizes the vertex positions with fixed
transformations and the second step optimizes affine transformations with fixed
vertex positions.

3.3 Detecting active regions corresponding to muscles

The skin actively deforms according to the motion is limited to the small number
of the regions in the whole skin. The proposed method detects the regions of the
skin which are deformed largely according to muscle contractions in order to use
them for predicting muscle activities and joint angles.

First, the part of the lower limb is extracted from the template model that
is deformed to each range scan. The deformed templates are then aligned to the
original template shape by rigid transformation so as to minimize the deforma-
tion vectors. It is necessary to reduce the error of the skeletal pose estimated by
the mocap system.
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Fig. 4. The displacement caused by deformation for each vertex is calculated based on
the normal vector at the vertex.

Gastrocnemius

Soleus

Back view Side view

Fig. 5. The variance of the displacement for all vertices is calculated by using the
training data set. The red parts indicate that the variance is large, and the regions of
Gastrocnemius and Soleus muscles can be recognized from the variance.

Second, the displacement caused by deformation r
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is calculated as follows.
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are the vertex positions of the deformed and original model,

respectively. n
(t)
i

is the normal vector at the vertex q
(t)
i

as shown in Fig.4.
Since the active regions are assumed to deform largely according to the muscle

activity and the joint angle. If the shape is captured for various poses and state
of muscles, the variance of the displacement is expected to be large. Fig.5 shows
the variance of the displacement calculated for all vertices by using the training
data set. The red part indicates that the variance is large, and the regions of
Gastrocnemius and Soleus muscles can be recognized from the variance.

The top 25% vertices are chosen as the active regions that are used for
prediction. Fig.6 shows the regions chosen as active. The number of vertices
are reduced to 25% of the original template by decimating the model to lower
the degree of freedom in this paper. For predicting the activity of Gastrocnemius
and Soleus muscles, the regions around the calf are used based on the knowledge
of biomechanics, while the all regions are used for predicting the ankle angle.
The set of active vertices are defined as Vact for predicting the muscle activities
and Vang for predicting the ankle angle, respectively.
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Back view Side view

Fig. 6. The red regions are regarded as active by choosing the vertices of top 25% vari-
ance. The number of vertices are reduced to 25% of the original template by decimating
the model.

3.4 Predicting muscle activity and joint angle from skin shape

To learn the relationship between skin shape and muscle activity, a muscle model
is assumed. Each muscle force along the fiber direction is often modeled as the
sum of an active and passive part as shown in Hill-type models [7, 8]. The passive
part depends on only the elastic property of each muscle, whereas the active one
is generated by the muscle activity. The active component can be represented
by the products of the activity level, the length depending function, the veloc-
ity dependent function, and the constant value related to the maximum muscle
contraction [39, 40]. In this paper, let us assume the quasi-static muscle contrac-
tion and the linear elastic isotropic property for muscle. In the assumption, the
local displacement as well as the active stress can be considered to be linear
with respect to the muscle activity level. When also assuming the small change
of the relative angle between the normal direction on each skin surface and the
fiber direction in the nearest muscle, the displacement of each skin vertex is
approximated to be linear to the corresponding muscle activity level.

Based on the above assumption, the following linear model between the skin
shape, muscle activity and ankle angle is considered.

y = Xω, y =
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-17.1◦ -14.0◦ -3.2◦ 12.4◦ 24.4◦ 34.3◦

Fig. 7. In the sequence for validation, the subject stands up on the toe by moving
the ankle from 20 degrees of dorsiflexion to 40 degrees of plantar flexion slowly in five
seconds. The middle row is the captured shape, and the bottom row is the skeleton
reconstructed from the predicted angles of the ankle joint. The red part of the shape
is used for predicting the muscle activities and the ankle angle.

y(t) is t-th sample of the one of two muscle activities and the angle of the ankle
joint, which are measured by the EMG sensors and the mocap system. ωV (i)

is the weight of i-th vertex in the active region V (i) to be estimated from the
training data set. V (i) is Vact for predicting the muscle activities and Vang for

predicting the ankle angle, respectively. r
(t)
V (i) is the displacement calculated for

each vertex of the t-th sample. The weight vector ω is estimated by the the
least square solution for three targets, two muscle activities and the ankle angle.
In the step of prediction, the displacement is given by calculating deformation
and the muscle activities and the ankle angle are estimated by using the weight
vector.

4 Experiments

As the training data set, we acquire 8K samples of skin shape, muscles activity
and joint angle. The angle of the ankle changes from 20 degrees of dorsiflexion to
40 degrees of plantar flexion during the acquisition. Fig.8 shows the distribution
of the muscle activity and the ankle angle is used for training parameters. The
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Fig. 8. The distribution of the muscle activity of Gastrocnemius muscle and the ankle
angle is used for training parameters.

muscle activity is captured so that it is distributed two-dimensionally over the
value range of both the muscle activity and the ankle angle.

The decimated template consists of 3.7K vertices while the original template
shape have 15K vertices. The active regions used for prediction consist of 138 and
176 vertices for estimating the muscle activities and the ankle angle, respectively.

As the validation data, we use a sequence that the subject stands up on the
toe by moving the ankle from 20 degrees of dorsiflexion to 40 degrees of plantar
flexion slowly in five seconds. Fig.7 shows the captured shape and the skeleton
reconstructed from the predicted angles of the ankle joint. The red part of the
shapes is used for predicting the muscle activities and the ankle angle. Although
the shape of the foot and ankle is not included for prediction, the proposed
method calculates the angles. The distribution of the muscle activity and the
ankle angle is shown in Fig.3.

The predicted results of two muscle activities and the ankle angle are shown
in Figs. 9, 10 and 11. The red lines are the results measured by EMG sensors
and the mocap system. The blue lines are the predicted results. 500 samples are
captured in five seconds, and the average errors are 9.0% and 6.7% of the MVCs
for the activities of Gastrocnemius and Soleus muscles, and 1.8 degrees for the
ankle angle, respectively.

The weight vector ω indicates how much the vertices that affect the predic-
tion of the muscle activities and the ankle angle. Fig.12 shows the magnitude of
the weight for each vertex. The red regions have large weights. With regard to
Gastrocnemius muscle, the large weights exist around the upper parts of the calf
where the bulges of Gastrocnemius muscle is visible on the skin. The weight for
Soleus muscle is similar to that for Gastrocnemius muscle since they are both
related to the motion of lowering the toe. But, there is large weight of Soleus
muscle at the side of the lower limb, where the Soleus muscle is visible on the
skin. The weight for predicting the ankle angle have large values on both the
front and back sides of the lower limb. It indicates that it is important to observe
the whole lower limb to predict the ankle angle, and is reasonable because the
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Fig. 9. The prediction result of the activ-
ity of Gastrocnemius muscle.

Fig. 10. The prediction result of the ac-
tivity of Soleus muscle.

Fig. 11. The prediction result of the joint angle of the ankle.

ankle angle is affected by the muscles on both sides, mainly by Gastrocnemius,
Soleus and Tibialis anterior muscles.

The Gastrocnemius and Soleus muscles cooperate with respect to the ankle
joints, and it is difficult to discriminate them by inverse kinematics, inverse
dynamics, or mathematical optimization. Since the proposed method observes
the deformation of individual muscle, the activity of the cooperative muscles can
be uniquely estimated. It is one of the contributions that is meaningful from the
viewpoint of the biomechanics.

5 Conclusion

In this paper, we have proposed a method of predicting muscle activity and
joint angle of human body from skin shape. The both factors are needed to be
considered simultaneously since the muscle activity and the joint angle affect
the skin shape. The proposed method is a learning-based approach that uses the
data set of the skin shape, the muscle activity and the joint angle, and trains a
linear regressor for predicting muscle activity and joint angle from skin shape.
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Gastrocnemius Soleus Ankle angle

Fig. 12. The red regions indicates that the vertex have large weights for prediction.
As to Gastrocnemius muscle, the large weights exist around the upper parts of the calf
where the bulges of Gastrocnemius muscle is visible on the skin. The weight for Soleus
muscle is similar to that for Gastrocnemius muscle, but there is large weight at the
side of the lower limb, where the Soleus muscle is visible on the skin. The weight for
predicting the ankle angle have large values on both the front and back sides of the
lower limb.

The active regions corresponding to the muscles are extracted from the training
data, and the weight parameters for prediction is learned for the active regions.
In this paper, we chose a simple situation of a lower limb that the ankle moves
one dimensionally to lower the toe. The muscle activity and joint angle are suc-
cessfully predicted even in the case that the both factors change simultaneously.
The learned weights are reasonable from the viewpoint of biomechanics, and
it indicates that the skin shapes gives useful information to infer the state of
muscle and joint.

The approach in this paper requires the training data set to learn the re-
gressor. Since it is costly to obtain the data for many subjects, the next step
is to study a scalable approach that can predict the state of muscle and joint
for many people even if they are not included in the training data set. One
of the promising approaches is the prediction based on a biomechanical model
by estimating the muscle structure for each individuals from the skin shape. A
model-based approach are expected to reduce the cost of collecting individual
data. Additionally, we plan to apply the proposed method to different part of
the body in the future work.
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