This ECCV 2018 workshop paper, provided here by the Computer Vision Foundation, is the author-created
version. The content of this paper is identical to the content of the officially published ECCV 2018
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccv

Complex-YOLO: An Euler-Region-Proposal for
Real-time 3D Object Detection on Point Clouds

Martin Simon'™, Stefan Milz, Karl Amende!”, Horst-Michael Gross”

Valeo Schalter und Sensoren GmbH', Ilmenau University of Technology”
{martin.simon,stefan.milz,karl.amende}@valeo.com
horst-michael.gross@tu-ilmenau.de

Abstract. Lidar based 3D object detection is inevitable for autonomous
driving, because it directly links to environmental understanding and
therefore builds the base for prediction and motion planning. The ca-
pacity of inferencing highly sparse 3D data in real-time is an ill-posed
problem for lots of other application areas besides automated vehicles,
e.g. augmented reality, personal robotics or industrial automation. We
introduce Complex-YOLO, a state of the art real-time 3D object detec-
tion network on point clouds only. In this work, we describe a network
that expands YOLOv2, a fast 2D standard object detector for RGB im-
ages, by a specific complex regression strategy to estimate multi-class
3D boxes in Cartesian space. Thus, we propose a specific Euler-Region-
Proposal Network (E-RPN) to estimate the pose of the object by adding
an imaginary and a real fraction to the regression network. This ends
up in a closed complex space and avoids singularities, which occur by
single angle estimations. The E-RPN supports to generalize well during
training. Our experiments on the KITTI benchmark suite show that we
outperform current leading methods for 3D object detection specifically
in terms of efficiency. We achieve state of the art results for cars, pedes-
trians and cyclists by being more than five times faster than the fastest
competitor. Further, our model is capable of estimating all eight KITTI-
classes, including Vans, Trucks or sitting pedestrians simultaneously with
high accuracy.

Keywords: 3D Object Detection, Point Cloud Processing, Lidar, Au-
tonomous Driving

1 Introduction

Point cloud processing is becoming more and more important for autonomous
driving due to the strong improvement of automotive Lidar sensors in the recent
years. The sensors of suppliers are capable to deliver 3D points of the surround-
ing environment in real-time. The advantage is a direct measurement of the
distance of encompassing objects [1]. This allows us to develop object detection
algorithms for autonomous driving that estimate the position and the heading
of different objects accurately in 3D [2] [3] [4] [5] [6] [7] [8] [9]. Compared to
images, Lidar point clouds are sparse with a varying density distributed all over

2 Simon et al.

3D Point
Cloud

1. Point-Cloud conversion to 2. Complex-YOLO on 3. 3D Bounding Box
Birds-Eye-View RGB-map Birds-Eye-View map re-conversion

Fig. 1. Complex-YOLO is a very efficient model that directly operates on Lidar only
based birds-eye-view RGB-maps to estimate and localize accurate 3D multiclass bound-
ing boxes. The upper part of the figure shows a bird view based on a Velodyne HDL64
point cloud (Geiger et al. [1]) such as the predicted objects. The lower one outlines
the re-projection of the 3D boxes into image space. Note: Complex-YOLO needs no
camera image as input, it is Lidar based only.

the measurement area. Those points are unordered, they interact locally and
could mainly be not analyzed isolated. Point cloud processing should always be
invariant to basic transformations [10] [11].

In general, object detection and classification based on deep learning is a well
known task and widely established for 2D bounding box regression on images
[12] [13] [14] [15] [16] [17] [18] [19] [20] [21]. Research focus was mainly a trade-
off between accuracy and efficiency. In regard to automated driving, efficiency
is much more important. Therefore, the best object detectors are using region
proposal networks (RPN) [3] [22] [15] or a similar grid based RPN-approach [13].
Those networks are extremely efficient, accurate and even capable of running on
a dedicated hardware or embedded devices. Object detections on point clouds
are still rarely, but more and more important. Those applications need to be
capable of predicting 3D bounding boxes. Currently, there exist mainly three
different approaches using deep learning [3]:

1. Direct point cloud processing using Multi-Layer-Perceptrons [5] [10] [11] [23]
[24]

Complex-YOLO: Real-time 3D Object Detection on Point Clouds 3

2. Translation of Point-Clouds into voxels or image stacks by using Convolu-
tional Neural Networks (CNN) [2] [3] [4] [6] [8] [9] [25] [26]
3. Combined fusion approaches [2] [7]

1.1 Related Work

Recently, Frustum-based Networks [5] have shown high performance on the
KITTI Benchmark suite. The model is ranked! on the second place either for
3D object detections, as for birds-eye-view detection based on cars, pedestrians
and cyclists. This is the only approach, which directly deals with the point cloud
using Point-Net [10] without using CNNs on Lidar data and voxel creation. How-
ever, it needs a pre-processing and therefore it has to use the camera sensor as
well. Based on another CNN dealing with the calibrated camera image, it uses
those detections to minimize the global point cloud to frustum-based reduced
point cloud. This approach has two drawbacks: i). The models accuracy strongly
depends on the camera image and its associated CNN. Hence, it is not possible
to apply the approach to Lidar data only; ii). The overall pipeline has to run
two deep learning approaches consecutive, which ends up in higher inference
time with lower efficiency. The referenced model runs with a too low frame-rate
at approximately 7fps on a NVIDIA GTX 1080i GPU [1].

In contrast, Zhou et al. [3] proposed a model that operates only on Lidar data.
In regard to that, it is the best ranked model on KITTI for 3D and birds-eye-
view detections using Lidar data only. The basic idea is an end-to-end learning
that operates on grid cells without using hand crafted features. Grid cell inside
features are learned during training using a Pointnet approach [10]. On top builds
up a CNN that predicts the 3D bounding boxes. Despite the high accuracy, the
model ends up in a low inference time of 4fps on a TitanX GPU |[3].

Another highly ranked approach is reported by Chen et al. [5]. The basic
idea is the projection of Lidar point clouds into voxel based RGB-maps using
handcrafted features, like points density, maximum height and a representative
point intensity [9]. To achieve highly accurate results, they use a multi-view
approach based on a Lidar birds-eye-view map, a Lidar based front-view map
and a camera based front-view image. This fusion ends up in a high processing
time resulting in only 4fps on a NVIDIA GTX 1080i GPU. Another drawback
is the need of the secondary sensor input (camera).

1.2 Contribution

To our surprise, no one is achieving real-time efficiency in terms of autonomous
driving so far. Hence, we introduce the first slim and accurate model that is
capable of running faster than 50fps on a NVIDIA TitanX GPU. We use the
multi-view idea (MV3D) [5] for point cloud pre-processing and feature extrac-
tion. However, we neglect the multi-view fusion and generate one single birds-
eye-view RGB-map (see Fig. 1) that is based on Lidar only, to ensure efficiency.

! The ranking refers to the time of submission: 14th of march in 2018

4 Simon et al.

On top, we present Complex-YOLO, a 3D version of YOLOv2, which is one of
the fastest state-of-the-art image object detectors [13]. Complex-YOLO is sup-
ported by our specific E-RPN that estimates the orientation of objects coded by
an imaginary and real part for each box. The idea is to have a closed mathemat-
ical space without singularities for accurate angle generalization. Our model is
capable to predict exact 3D boxes with localization and an exact heading of the
objects in real-time, even if the object is based on a few points (e.g. pedestrians).
Therefore, we designed special anchor-boxes. Further, it is capable to predict all
eight KITTT classes by using only Lidar input data. We evaluated our model on
the KITTI benchmark suite. In terms of accuracy, we achieved on par results
for cars, pedestrians and cyclists, in terms of efficiency we outperform current
leaders by minimum factor of 5. The main contributions of this paper are:

1. This work introduces Complex-YOLO by using a new E-RPN for reliable
angle regression for 3D box estimation.

2. We present real-time performance with high accuracy evaluated on the KITTI
benchmark suite by being more than five times faster than the current lead-
ing models.

3. We estimate an exact heading of each 3D box supported by the E-RPN that
enables the prediction of the trajectory of surrounding objects.

4. Compared to other Lidar based methods (e.g. [3]) our model efficiently esti-
mates all classes simultaneously in one forward path.

2 Complex-YOLO

This section describes the grid based pre-processing of the point clouds, the spe-
cific network architecture, the derived loss function for training and our efficiency
design to ensure real-time performance.

2.1 Point Cloud Preprocessing

The 3D point cloud of a single frame, acquired by Velodyne HDL64 laser scanner
[1], is converted into a single birds-eye-view RGB-map, covering an area of 80m
x 40m (see Fig.4) directly in front of the origin of the sensor. Inspired by Chen
et al. (MV3D) [5], the RGB-map is encoded by height, intensity and density.
The size of the grid map is defined with n = 1024 and m = 512. Therefore,
we projected and discretized the 3D point clouds into a 2D grid with resolution
of about ¢ = 8cm. Compared to MV3D, we slightly decreased the cell size
to achieve less quantization errors, accompanied with higher input resolution.
Due to efficiency and performance reasons, we are using only one instead of
multiple height maps. Consequently, all three feature channels (2, zq, 2z, with
Zrgp € R™*™) are calculated for the whole point cloud P € R? inside the
covering area §2. We consider the Velodyne within the origin of Py and define:

Po = {P = [z,y,2]" | € [0,40m],y € [~40m,40m], z € [-2m,1.25m]} (1)

Complex-YOLO: Real-time 3D Object Detection on Point Clouds 5

RGB-Map 512 CNN " ERPNGrd 8t Bytats
rd P RE P,
; 1
116 \ £ 1) 4 tytiate 1
B Py - P,
32
........ t ly to bt te 4
1024 — 5 predictions per cell Po - Pn

Fig. 2. Complex-YOLO Pipeline. We present a slim pipeline for fast and accurate
3D box estimations on point clouds. The RGB-map is fed into the CNN (see Tab. 1).
The E-RPN grid runs simultaneously on the last feature map and predicts five boxes
per grid cell. Each box prediction is composed by the regression parameters ¢ (see Fig.
3) and object scores p with a general probability po and n class scores pi...pn.

We choose z € [—2m,1.25m], considering the Lidar z position of 1.73m [1],
to cover an area above the ground to about 3m height, expecting trucks as
highest objects. With the aid of the calibration [1], we define a mapping function
S; = fps(Pqi, g) with S € R™*™ mapping each point with index ¢ into a specific
grid cell S; of our RGB-map. A set describes all points mapped into a specific
grid cell:

Paisj = {Pai = [x,y,2]"|S; = frs(Pai, 9)} (2)

Hence, we can calculate the channel of each pixel, considering the Velodyne
intensity as I(Pg):

24(S;) = max(Pgi; - [0,0,1]7)
2p(Sj) = max(I(Pgi-;)) (3)
(S;) = min (1.0,log(N +1)/64) N = |Pnij|

2y

Here, N describes the number of points mapped from Pg; to S;, and g is the
parameter for the grid cell size. Hence, 2, encodes the maximum height, z, the
maximum intensity and z, the normalized density of all points mapped into S;
(see Fig. 2).

2.2 Architecture

The Complex-YOLO network takes a birds-eye-view RGB-map (see section 2.1)
as input. It uses a simplified YOLOv2 [13] CNN architecture (see Tab. 1), ex-
tended by a complex angle regression and E-RPN, to detect accurate multi-class
oriented 3D objects while still operating in real-time.

Euler-Region-Proposal. Our E-RPN parses the 3D position b, ,, object di-
mensions (width b,, and length b;) as well as a probability pg, class scores p;...p,
and finally its orientation by from the incoming feature map. In order to get

6 Simon et al.

proper orientation, we have modified the commonly used Grid-RPN approach,
by adding a complex angle arg(|z|e®®?#) to it:

by = o(ty) + ¢

by = o(ty) +cy
bw = pwetw
by = pe"!

by = arg(|z\eib¢) = arctans (trm, tre)

With the help of this extension the E-RPN estimates accurate object orientations
based on an imaginary and real fraction directly embedded into the network. For
each grid cell (32x16 see Tab. 1) we predict five objects including a probability
score and class scores resulting in 75 features each, visualized in Fig. 2.

Anchor Box Design. The YOLOvV2 ob-
ject detector [13] predicts five boxes per
grid cell. All were initialized with ben-
eficial priors, i.e. anchor boxes, for bet-
ter convergence during training. Due to
the angle regression, the degrees of free-
dom, i.e. the number of possible priors in-
creased, but we did not enlarge the num-
ber of predictions for efficiency reasons.
Hence, we defined only three different
sizes and two angle directions as priors,
based on the distribution of boxes within
the KITTT dataset: i) vehicle size (head-
ing up); ii) vehicle size (heading down);
iii) cyclist size (heading up); iv) cyclist
size (heading down); v) pedestrian size
(heading left).

Complex Angle Regression. The ori-
entation angle for each object by can be
computed from the responsible regression
parameters t;,, and t,., which correspond
to the phase of a complex number, simi-
lar to [27]. The angle is given simply by
using arctans (tim, tre). On one hand, this
avoids singularities, on the other hand this
results in a closed mathematical space,

Table 1. Complex-YOLO Design.
Our nal model has 18 convolutional and
5 maxpool layers, as well as 3 interme-
diate layers for feature reorganization
respectively.

layer

filters

size

input

output

conv
max
conv
max
conv
conv
conv
max
conv
conv
conv
max
conv
conv
conv
max
conv
conv
conv
conv
conv
route
reorg
route
conv
conv

24

48

64
32
64

128

128

256
256
512

512
512
1024
1024
1024

22 20
1024
75

3x3/1
2x2/2
3x3/1
2x2/2
3x3/1
1x1/1
3x3/1
2x2/2
3x3/1
3x3/1
3x3/1
2x2/2
3x3/1
1x1/1
3x3/1
2x2/2
3x3/1
1x1/1
3x3/1
3x3/1
3x3/1

/2

3x3/1
1x1/1

1024x512x3
1024x512x24
512x256x24
512x256x48
256x128x48
256x128x64
256x128x32
256x128x64
128x64x64
128x64x128
128x64x64
128x64x128
64x32x128
64x32x256
64x32x256
64x32x512
32x16x512
32x16x512
32x16x512
32x16x1024
32x16x1024

64x32x256

32x16x2048
32x16x1024

1024x512x24
512x256x24
512x256x48
256x128x48
256x128x64
256x128x32
256x128x64
128x64x64
128x64x128
128x64x64
128x64x128
64x32x128
64x32x256
64x32x256
64x32x512
32x16x512
32x16x512
32x16x512
32x16x1024
32x16x1024
32x16x1024

32x16x1024

32x16x1024
32x16x75

E-RPN

32x16x75

which consequently has an advantageous impact on generalization of the model.
We can link our regression parameters directly into the loss function (7).

Complex-YOLO: Real-time 3D Object Detection on Point Clouds 7

Fig. 3. 3D Bounding box regression. We predict oriented 3D bounding boxes based
on the regression parameters shown in YOLOv2 [13], as well as a complex angle for
box orientation. The transition from 2D to 3D is done by a predefined height based on
each class.

2.3 Loss Function

Our network optimization loss function £ is based on the the concepts from
YOLO [12] and YOLOv2 [13], who defined Ly, as the sum of squared errors
using the introduced multi-part loss. We extend this approach by an Euler re-
gression part Lgyer to get use of the complex numbers, which have a closed
mathematical space for angle comparisons. This neglect singularities, which are
common for single angle estimations:

L= »CYolo + »CEuler (5)

The Euler regression part of the loss function is defined with the aid of the Euler-
Region-Proposal (see Fig. 3). Assuming that the difference between the complex
numbers of prediction and ground truth, i.e. |z|el’s and |2|e!®¢ is always located
on the unit circle with |z| = 1 and |2| = 1, we minimize the absolute value of
the squared error to get a real loss:

S? B
EEuler = Acoord Z Z]1?](‘)] ’(6ib¢ - eib¢)2 (6)

i=0 j=0

S? B
=)\coord Z Z ﬂ?;j [(tim - Eim)Q + (tre - £7‘6)2] (7>

i=0 j=0

Where Acoorq is a scaling factor to ensure stable convergence in early phases and
12% denotes that the jth bounding box predictor in cell i has highest intersection
over union (IoU) compared to ground truth for that prediction. Furthermore the

comparison between the predicted box P; and ground truth G' with IoU 11}: Gg,
J

where P,LNG={z:z € PjAz € G}, P,UG{z :x € P; Vx € G} is adjusted to

8 Simon et al.

handle rotated boxes as well. This is realized by the theory of intersection of two
2D polygon geometries and union respectively, generated from the corresponding
box parameters by, by, by, b and bg.

2.4 Efficiency Design

The main advantage of the used network design is the prediction of all bounding
boxes in one inference pass. The E-RPN is part of the network and uses the
output of the last convolutional layer to predict all bounding boxes. Hence, we
only have one network, which can be trained in an end-to-end manner without
specific training approaches. Due to this, our model has a lower runtime than
other models that generate region proposals in a sliding window manner [22] with
prediction of offsets and the class for every proposal (e.g. Faster R-CNN [15]).
In Fig. 5 we compare our architecture with some of the leading models on the
KITTI benchmark. Our approach achieves a way higher frame rate while still
keeping a comparable mAP (mean Average Precision). The frame rates were
directly taken from the respective papers and all were tested on a Titan X or
Titan Xp. We tested our model on a Titan X and an NVIDIA TX2 board to
emphasize the real-time capability (see Fig. 5).

3 Training & Experiments

We evaluated Complex-YOLO on the challenging KITTI object detection bench-
mark [1], which is divided into three subcategories 2D, 3D and birds-eye-view
object detection for Cars, Pedestrians and Cyclists. Each class is evaluated based
on three difficulty levels easy, moderate and hard considering the object size, dis-
tance, occlusion and truncation. This public dataset provides 7,481 samples for
training including annotated ground truth and 7,518 test samples with point
clouds taken from a Velodyne laser scanner, where annotation data is private.
Note that we focused on birds-eye-view and do not ran the 2D object detection
benchmark, since our input is Lidar based only.

3.1 Training Detalils

We trained our model from scratch via stochastic gradient descent with a weight
decay of 0.0005 and momentum 0.9. Our implementation is based on modified
version of the Darknet neural network framework [28]. First, we applied our
pre-processing (see Section 2.1) to generate the birds-eye-view RGB-maps from
Velodyne samples. Following the principles from [2] [3] [29], we subdivided the
training set with public available ground truth, but used ratios of 85% for train-
ing and 15% for validation, because we trained from scratch and aimed for a
model that is capable of multi-class predictions. In contrast, e.g. VoxelNet [3]
modified and optimized the model for different classes. We suffered from the
available ground truth data, because it was intended for camera detections first.
The class distribution with more than 75% Car, less than 4% Cyclist and less

Complex-YOLO: Real-time 3D Object Detection on Point Clouds 9

sample detection spatial distribution of ground truth

Fig. 4. Spatial ground truth distribution. The figure outlines the size of the birds-
eye-view area with a sample detection on the left. The right shows a 2D spatial his-
togram of annotated boxes in [1]. The distribution outlines the horizontal field of view
of the camera used for annotation and the inherited blind spots in our map.

than 15% Pedestrian is disadvantageous. Also, more than 90% of all the an-
notated objects are facing the car direction, facing towards the recording car
or having similar orientations. On top, Fig. 4 shows a 2D histogram for spatial
object locations from birds-eye-view perspective, where dense points indicate
more objects at exactly this position. This inherits two blind spot for birds-eye-
view map. Nevertheless we saw surprising good results for the validation set and
other recorded unlabeled KITTI sequences covering several use case scenarios,
like urban, highway or inner city.

For the first epochs, we started with a small learning rate to ensure con-
vergence. After some epochs, we scaled the learning rate up and continued to
gradually decrease it for up to 1,000 epochs. Due to the fine grained requirements,
when using a birds-eye-view approach, slight changes in predicted features will
have a strong impact on resulting box predictions. We used batch normalization
for regularization and a linear activation f(z) = x for the last layer of our CNN,
apart from that the leaky rectified linear activation:

1@ = {0 e)

0.1z, otherwise

3.2 Evaluation on KITTI

We have adapted our experimental setup and follow the official KITTT evalua-
tion protocol, where the IoU thresholds are 0.7 for class Car and 0.5 for class
Pedestrian and Cyclist. Detections that are not visible on the image plane are
filtered, because the ground truth is only available for objects that also appear
on the image plane of the camera recording [1] (see Fig. 4. We used the average
precision (AP) metric to compare the results. Note, that we ignore a small num-
ber of objects that are outside our birds-eye-view map boundaries with more
than 40m to the front, to keep the input dimensions as small as possible for
efficiency reasons.

10 Simon et al.

1.0 : ; ; :
c : : (O Tested on NVIDIA Titan X / Titan XP
o ! i
w ! | 17 Tested on NVIDIA TX2
3 ' .
g o8 ; | 1
o Complex Yplo TX2 \
) ! !
- i 1
g / F.P?lntnet . Complex Yolo
1Y AVOD-FPN |
0.6
2 L4 ? @AVOD [
- VxNet | !
© | 1
Q i I
= ! |
0.4} ! ' 1
. L . .
0 10 20 30 40 50 60

Frames Per Second

Fig. 5. Performance comparison. This plot shows the mAP in relation to the run-
time (fps). All models were tested on a Nvidia Titan X or Titan Xp. Complex-Yolo
achieves accurate results by being five times faster than the most effective competitor
on the KITTI benchmark [1]. We compared to the five leading models and measured
our network on a dedicated embedded platform (TX2) with reasonable efficiency (4fps)
as well. Complex-Yolo is the first model for real-time 3D object detection.

Birds-Eye-View. Our evaluation results for the birds-eye-view detection are
presented in Tab. 2. This benchmark uses bounding box overlap for comparison.
For a better overview and to rank the results, similar current leading methods
are listed as well, but performing on the official KITTT test set. Complex-YOLO
consistently outperforms all competitors in terms of runtime and efficiency, while
still manages to achieve comparable accuracy. With about 0.02s runtime on a
Titan X GPU, we are 5 times faster than AVOD [7], considering their usage
of a more powerful GPU (Titan Xp). Compared to VoxelNet [3], which is also
Lidar based only, we are more than 10 times faster and MV3D [2], the slowest
competitor, takes 18 times as long.

Table 2. Performance comparison for birds-eye-view detection. APs (in %) for
our experimental setup compared to current leading methods. Note that our method
is validated on our splitted validation dataset, whereas all others are validated on the
official KITTTI test set.

Car Pedestrian Cyclist

Method |Modality |FPS
Easy ‘ Mod. ‘ Hard || Easy ‘ Mod. ‘ Hard || Easy ‘ Mod. ‘ Hard

MV3D [2] Lidar+Mono | 2.8 86.02 | 76.90 | 68.49 - - - - - -
F-PointNet [5] | Lidar+Mono | 5.9 88.70 | 84.00 | 75.33 || 58.09 | 50.22 | 47.20 || 75.38 | 61.96 | 54.68

AVOD [7] Lidar+Mono | 12.5 || 86.80 | 85.44 | 77.73 || 42.51 | 35.24 | 33.97 || 63.66 | 47.74 | 46.55
AVOD-FPN [7]| Lidar+Mono | 10.0 || 88.53 | 83.79 | 77.90 || 50.66 | 44.75 | 40.83 || 62.39 | 52.02 | 47.87

VoxelNet [3] Lidar 4.3 || 89.35| 79.26 | 77.39 || 46.13 | 40.74 | 38.11 || 66.70 | 54.76 | 50.55

Complex-

YOLO Lidar 50.4 || 85.89 | 77.40 | 77.33 || 46.08 | 45.90 | 44.20 || 72.37 | 63.36 | 60.27

Complex-YOLO: Real-time 3D Object Detection on Point Clouds 11

3D Object Detection. Tab. 3 shows our achieved results for the 3D bound-
ing box overlap. Since we do not estimate the height information directly with
regression, we ran this benchmark with a fixed spatial height location extracted
from ground truth similar to MV3D [2]. Additionally as mentioned, we simply
injected a predefined height for every object based on its class, calculated from
the mean over all ground truth objects per class. This reduces the precision
for all classes, but it confirms the good results measured on the birds-eye-view
benchmark.

Table 3. Performance comparison for 3D object detection. APs (in %) for our
experimental setup compared to current leading methods. Note that our method is
validated on our splitted validation dataset, whereas all others are validated on the
official KITTT test set.

Car Pedestrian Cyclist

Method |Modality | FPS
Easy ‘ Mod. ‘ Hard || Easy ‘ Mod. ‘ Hard || Easy ‘ Mod. ‘ Hard

MV3D [2] Lidar+Mono | 2.8 71.09 | 62.35 | 55.12 - - - - - -
F-PointNet [5] | Lidar+Mono | 5.9 81.20 | 70.39 | 62.19 || 51.21 | 44.89 | 40.23 || 71.96 | 56.77 | 50.39

AVOD [7] Lidar+Mono | 12.5 || 73.59 | 65.78 | 58.38 || 38.28 | 31.51 | 26.98 || 60.11 | 44.90 | 38.80
AVOD-FPN [7]| Lidar+Mono | 10.0 || 81.94 | 71.88 | 66.38 || 46.35 | 39.00 | 36.58 || 59.97 | 46.12 | 42.36

VoxelNet [3] Lidar 4.3 || 77.47 | 65.11 | 57.73 || 39.48 | 33.69 | 31.51 || 61.22 | 48.36 | 44.37
C@’g‘ﬁg"’ Lidar 50.4 || 67.72 | 64.00 | 63.01 || 41.79 | 39.70 | 35.92 || 68.17 | 58.32 | 54.30

4 Conclusion

In this paper we present the first real-time efficient deep learning model for 3D
object detection on Lidar based point clouds. We highlight our state of the art
results in terms of accuracy (see Fig. 5) on the KITTI benchmark suite with an
outstanding efficiency of more than 50 fps (NVIDIA Titan X). We do not need
additional sensors, e.g. camera, like most of the leading approaches. This break-
through is achieved by the introduction of the new E-RPN, an Euler regression
approach for estimating orientations with the aid of the complex numbers. The
closed mathematical space without singularities allows robust angle prediction.
Our approach is able to detect objects of multiple classes (e.g. cars, vans,
pedestrians, cyclists, trucks, tram, sitting pedestrians, misc) simultaneously in
one forward path. This novelty enables deployment for real usage in self driving
cars and clearly differentiates to other models. We show the real-time capability
even on dedicated embedded platform NVIDIA TX2 (4 fps). In future work, it is
planned to add height information to the regression, enabling a real independent
3D object detection in space, and to use tempo-spatial dependencies within point
cloud pre-processing for a better class distinction and improved accuracy.

12 Simon et al.

Fig. 6. Visualization of Complex-YOLO results. Note that predictions are exclu-
sively based on birds-eye-view images generated from point clouds. The re-projection
into camera space is for illustrative purposes only.

Acknowledgement

First, we would like to thank our main employer Valeo, especially Jorg Schrepfer
and Johannes Petzold, for giving us the possibility to do fundamental research.
Additionally, we would like to thank our colleague Maximillian Jaritz for his
important contribution on voxel generation. Last but not least, we would like to
thank our academic partner the TU-Ilmenau for having a fruitful partnership.

Complex-YOLO: Real-time 3D Object Detection on Point Clouds 13

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Geiger, A.: Are we ready for autonomous driving? the kitti vision benchmark suite.
In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). CVPR ’12, Washington, DC, USA, IEEE Computer Society
(2012) 3354-3361

Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network
for autonomous driving. CoRR abs/1611.07759 (2016)

. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object

detection. CoRR abs/1711.06396 (2017)

Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H., Posner, I.: Vote3deep: Fast object
detection in 3d point clouds using efficient convolutional neural networks. CoRR
abs/1609.06666 (2016)

. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object

detection from RGB-D data. CoRR abs/1711.08488 (2017)

Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection.
In: Proceedings of Robotics: Science and Systems, Rome, Italy (July 2015)

Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3d proposal gener-
ation and object detection from view aggregation. arXiv preprint arXiv:1712.02294
(2017)

Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully convolutional
network. CoRR abs/1608.07916 (2016)

Li, B.: 3d fully convolutional network for vehicle detection in point cloud. CoRR
abs/1611.08069 (2016)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. CoRR abs/1612.00593 (2016)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. CoRR abs/1706.02413 (2017)
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified,
real-time object detection. CoRR abs/1506.02640 (2015)

Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR
abs/1612.08242 (2016)

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.:
SSD: single shot multibox detector. CoRR abs/1512.02325 (2015)

Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR abs/1506.01497 (2015)

Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolu-
tional neural network for fast object detection. CoRR abs/1607.07155 (2016)
Ren, J.S.J., Chen, X., Liu, J., Sun, W., Pang, J., Yan, Q., Tai, Y., Xu, L.: Accurate
single stage detector using recurrent rolling convolution. CoRR abs/1704.05776
(2017)

Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3d
object detection for autonomous driving. In: IEEE CVPR. (2016)

Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. CoRR abs/1311.2524 (2013)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015)

Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3d object proposals
using stereo imagery for accurate object class detection. CoRR abs/1608.07711
(2016)

14

22.
23.
24.

25.

26.

27.

28.

29.

Simon et al.

Girshick, R.B.: Fast R-CNN. CoRR abs/1504.08083 (2015)

Li, Y., Bu, R., Sun, M., Chen, B.: Pointcnn (2018)

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds (2018)

Xiang, Y., Choi, W., Lin, Y., Savarese, S.: Data-driven 3d voxel patterns for
object category recognition. In: Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition. (2015)

Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3d shapenets for 2.5d object
recognition and next-best-view prediction. CoRR abs/1406.5670 (2014)

Beyer, L., Hermans, A., Leibe, B.: Biternion nets: Continuous head pose regression
from discrete training labels. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9358 (2015) 157-168

Redmon, J.: Darknet: Open source neural networks in c.
http://pjreddie.com/darknet/ (2013-2016)

Chen, X., Kundu, K., Zhu, Y., Berneshawi, A., Ma, H., Fidler, S., Urtasun, R.: 3d
object proposals for accurate object class detection. In: NIPS. (2015)

