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Abstract. We propose a method for the weakly supervised detection
of objects in paintings. At training time, only image-level annotations
are needed. This, combined with the efficiency of our multiple-instance
learning method, enables one to learn new classes on-the-fly from glob-
ally annotated databases, avoiding the tedious task of manually marking
objects. We show on several databases that dropping the instance-level
annotations only yields mild performance losses. We also introduce a
new database, IconArt, on which we perform detection experiments on
classes that could not be learned on photographs, such as Jesus Child or
Saint Sebastian. To the best of our knowledge, these are the first exper-
iments dealing with the automatic (and in our case weakly supervised)
detection of iconographic elements in paintings. We believe that such
a method is of great benefit for helping art historians to explore large
digital databases.
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1 Introduction

Several recent works show that recycling analysis tools that have been developed
for natural images (photographs) can yield surprisingly good results for analysing
paintings or drawings. In particular, impressive classification results are obtained
on painting databases by using convolutional neural networks (CNNs) designed
for the classification of photographs [I0/55]. These results occur in a general
context were methods of transfer learning [14] (changing the task a model was
trained for) and domain adaptation (changing the nature of the data a model
was trained on) are increasingly applied. Classifying and analysing paintings
is of course of great interest to art historians, and can help them to take full
advantage of the massive artworks databases that are built worldwide.

More difficult than classification, and at the core of many recent computer
vision works, the object detection task (classifying and localising an object) has
been less studied in the case of paintings, although exciting results have been
obtained, again using transfer techniques [TTI52I28].
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Methods that detect objects in photographs have been developed thanks to
massive image databases on which several classes (such as cats, people, cars)
have been manually localised with bounding boxes. The PASCAL VOC [17] and
MS COCO [34] datasets have been crucial in the development of detection meth-
ods and the recently introduced Google Open Image Dataset (2M images, 15M
boxes for 600 classes) is expected to push further the limits of detection. Now,
there is no such database (with localised objects) in the field of Art History, even
though large databases are being build by many institutions or academic research
teams, e.g. [44I43IT6I38I39/53]. Some of these databases include image-level an-
notations, but none includes location annotations. Besides, manually annotating
such large databases is tedious and must be performed each time a new category
is searched for. Therefore, it is of great interest to develop weakly supervised de-
tection methods, that can learn to detect objects using image-level annotations
only. While this aspect has been thoroughly studied for natural images, only a
few studies have been dedicated to the case of painting or drawings.

Moreover, these studies are mostly dedicated to the cross depiction prob-
lem: they learn to detect the same objects in photographs and in paintings, in
particular man-made objects (cars, bottles ...) or animals. While these may be
useful to art historians, it is obviously needed to detect more specific objects or
attributes such as ruins or nudity, and characters of iconographic interest such
as Mary, Jesus as a child or the crucifixion of Jesus, for instance. These last
categories can hardly be directly inherited from photographic databases.

For these two reasons, the lack of location annotations and the specificity
of the categories of interest, a general method allowing the weakly supervised
detection on specific domains such as paintings would be of great interest to art
historians and more generally to anyone needing some automatic tools to explore
artistic databases. We propose some contributions in this direction:

— We introduce a new multiple-instance learning (MIL) technique that is sim-
ple and quick enough to deal with large databases,

— We demonstrate the utility of the proposed technique for object detection on
weakly annotated databases, including photographs, drawings and paintings.
These experiments are performed using image-level annotations only.

— We propose the first experiments dealing with the recognition and detection
of iconographic elements that are specific to Art History, exhibiting both
successful detections and some classes that are particularly challenging, es-
pecially in a weakly supervised context.

We believe that such a system, enabling one to detect new and unseen cat-
egory with minimal supervision, is of great benefit for dealing efficiently with
digital artwork databases. More precisely, iconographic detection results are use-
ful for different and particularly active domains of humanities: Art History (to
gather data relative to the iconography of recurrent characters, such as the Virgin
Mary or San Sebastian, as well as to study the formal evolution of their repre-
sentations), Semiology (to infer mutual configurations or relative dimensions of
the iconographic elements), History of Ideas and Cultures (with category such
as nudity, ruins), Material Culture Studies, etc.
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In particular, being able to detect iconographic elements is of great impor-
tance for the study of spatial configurations, which are central to the reading of
images and particularly timely given the increasing importance of Semiology. To
fix ideas, we can give two examples of potential use. First, the order in which
iconographic elements are encountered (e.g. Gabriel and Mary), when reading
an image from left to right, has received much attention from art historians [20].
In the same spirit, recent studies [5] on the meaning of mirror images in early
modern Italy could benefit from the detection of iconographic elements.

2 Related Work

Object recognition and detection in artworks Early works on cross-domain
(or cross-depiction) image comparisons were mostly concerned with sketch re-
trieval, see e.g. [12]. Various local descriptors were then used for comparing
and classifying images, such as part-based models [46] or mid-level discrimi-
native patches [20]. In order to enhance the generalisation capacity of these
approaches, it was proposed in [54] to model object through graphs of labels.
More generally, it was shown in [25] that structured models are more prone to
succeed in cross-domain recognition than appearance-based models.

Next, several works have tried to transfer the tremendous classification capac-
ity of convolutional neural networks to perform cross-domain object recognition,
in particular for paintings. In [I0], it is shown that recycling CNNs directly
for the task of recognising objects in paintings, without fine-tuning, yields sur-
prisingly good results. Similar conclusions were also given in [55] for artistic
drawings. In [32], a robust low rank parametrized CNN model is proposed to
recognise common categories in an unseen domain (photo, painting, cartoon or
sketch). In [53], a new annotated database is introduced, on which it is shown
that fine-tuning improves recognition performances. Several works have also suc-
cessfully adapted CNNs architectures to the problem of style recognition in art-
works [BTI336]. More generally, the use of CNNs opens the way to other artwork
analysis tasks, such as visual links retrieval [45], scene classification [19], author
classification [51] or possibly to generic artwork content representation [48].

The problem of object detection in paintings, that is, being able to both
localise and recognise objects, has been less studied. In [I1], it is shown that
applying a pre-trained object detector (Faster R-CNN [42]) and then selecting
the localisation with highest confidence can yield correct detections of PASCAL
VOC classes. Other works attacked this difficult problem by restricting it to a
single class. In [22], it is shown that deformable part model outperforms other
approaches, including some CNNs, for the detection of people in cubist artworks.
In [40], it is shown that the YOLO network trained on natural images can, to
some extend, be used for people detection in cubism. In [52], it is proposed
to perform people detection in a wide variety of artworks (through a newly
introduced database) by fine-tuning a network in a supervised way. People can
be detected with high accuracy even though the database has very large stylistic
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variations and includes paintings that strongly differs from photographs in the
way they represent people.

Weakly supervised detection refers to the task of learning an object
detector using limited annotations, usually image-level annotations only. Often,
a set of detections (e.g. bounding boxes) is considered at image level, assuming
we only know if at least one of the detection corresponds the category of interest.
The corresponding statistical problem is referred to as multiple instance learning
(MIL) [13]. A well-known solution to this problem through a generalisation of
Support Vector Machine (SVM) has been proposed in [I]. Several approximations
of the involved non-convex problem have been proposed, see e.g. [21] or the recent
survey [6].

Recently, this problem has been attacked using classification and detection
neural networks. In [47], it is proposed to learn a smooth version of an SVM on
the features from R-CNN [23] and to focus on the initialisation phase which is
crucial due to the non-convexity of the problem. In [41], it is proposed to learn
to detect new specific classes by taking advantage of the knowledge of wider
classes. In [4] a weakly supervised deep detection network is proposed based on
Fast R-CNN [24]. Those works have been improved in [50] by adding a multi-
stage classifier refinement. In [§] a multi-fold split of the training data is proposed
to escape local optima. In [33], a two step strategy is proposed, first collecting
good regions by a mask-out classification, then selecting the best positive region
in each image by a MIL formulation and then fine-tuning a detector with those
propositions as ”ground truth” bounding boxes. In [I5] a new pooling strategy
is proposed to efficiently learn localisation of objects without doing bounding
boxes regression.

Weakly supervised strategies for the cross domain problem have been much
less studied. In [I1], a relatively basic methodology is proposed, in which for
each image the bounding box with highest (class agnostic) "objectness” score is
classified. In [28], it is proposed to do mixed supervised object detection with
cross-domain learning based on the SSD network [35]. Object detectors are learnt
by using instance-level annotations on photographs and image-level annotations
on a target domain (watercolor, cartoon, etc.). We will perform comparisons of
our approach with these two methods in Section [4]

3 Weakly supervised detection by transfer learning

In this section, we propose our approach to the weakly supervised detection of
visual category in paintings. In order to perform transfer learning, we first apply
Faster R-CNN [42] (a detection network trained on photographs) which is used
as a feature extractor, in the same way as in [I1]. This results in a set of candidate
bounding boxes. For a given visual category, the goal is then, using image-level
annotations only, to decide which boxes correspond to this category. For this,
we propose a new multiple-instance learning method, that will be detailed in
Section In contrast with classical approaches to the MIL problem such as [I]
the proposed heuristic is very fast. This, combined with the fact that we do not
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need fine-tuning, permits a flexible on-the-fly learning of new category in a few
minutes.

Figure [I]illustrates the situation we face at training time. For each image, we
are given a set of bounding boxes which receive a label 41 (the visual category
of interest is present at least once) or —1 (the category is not present in this
image).

Fig. 1. Illustration of positive and negative sets of detections (bounding boxes) for the
angel category.

3.1 Multiple Instance Learning

The usual way to perform MIL is through the resolution of a non-convex energy
minimisation [I], although efficient convex relaxations have been proposed [29].
One disadvantage of these approaches is their heavy computational cost. In what
follows, we propose a simple and fast heuristic to this problem.

For simplicity of the presentation, we assume only one visual category. As-
sume we have N images at hand, each of which contains K bounding boxes.
Each image receives a label y = +1 when it is a positive example (the cate-
gory is present) and y = —1 otherwise. We denote by n; the number of positive
examples in the training set, and by n_; the number of negative examples.

Images are indexed by 4, the K regions provided by the object detector are
indexed by k, the label of the i-th image is denoted by y; and the high level
semantic feature vector of size M associated to the k-th box in the i-th image
is denoted X; ;. We also assume that the detector provides a (class agnostic)
”objectness” score for this box, denoted s; ;.

We make the (strong) hypothesis that if y; = 41, then there is at least one of
the K regions in image ¢ that contains an occurrence of the category. In a sense,
we assume that the region proposal part is robust enough to transfer detections
from photography to the target domain.

Following this assumption, our problem boils down to the classic multiple-
instance classification problem [I3]: if for image ¢ we have y; = +1, then at least
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one of the boxes contains the category, whereas if y; = —1 no box does. The goal
is then to decide which boxes correspond to the category. Instead of the classical
SVM generalisation proposed in [I] and based on an iterative procedure, we look
for an hyperplan minimising the functional defined below. We look for w € RM,
b € R achieving

min (w,p) £(w, b) (1)
with
N —y;
¢(w,b) = Z; n—y:Tanh {ke%g;% } (w" Xk + b)} (2)
and
L(w,b) = ¢(w, b) + C = [[w]|?, (3)

where C' is a constant balancing the regularisation term. The intuition behind
this formulation is that minimising £(w, b) amounts to seek a hyperplan sepa-
rating the most positive element of each positive image from the least negative
element of the negative image, sharing similar ideas as in MI-SVM [I] or Latent-
SVM [18]. The Tanh is here to mimic the SVM formulation in which only the
worst margins count. We divide by n,, to account for unbalanced data. Indeed
most example images are negative ones (n_y >> nq)).

The main advantage of this formulation is that it can be realised by a simple
gradient descent, therefore avoiding costly multiple SVM optimisation. If the
dataset is too big to fit in the memory, we switch to a stochastic gradient descent
by considering random batches in the training set.

As this problem is non-convex, we try several random initialisation and we
select the couple w,b minimising the classification function ¢(w,b). Although
we did not explore this possibility it may be interesting to keep more than one
vector to describe a class, since one iconographic element could have more that
one specific feature, each stemming from a distinctive part.

In practice, we observed consistently better results when modifying slightly
the above formulation by considering the (class-agnostic) ”objectness” score as-
sociated to each box (as returned by Faster R-CNN). Therefore we modify func-
tion ¢ to

N
s —Yi T
¢°(w,b) = ; n Tanh {ker?l%.}}(} ((sik+€) (W Xip+ b))} (4)
with € > 0. The motivation behind this formulation is that the score s; ;, roughly
a probability that there is an object (of any category) in box k, provides a
prioritisation between boxes.

Once the best couple (w*, b*) has been found, we compute the following score,
reflecting the meaningfulness of category association :

S(z) = Tanh{(s(z) + €) (v + b*)} (5)
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At test time, each box with a positive score (5]) (where s(z) is the objectness
score associated to x) is affected to the category. The approach is then straight-
forwardly extended to an arbitrary number of categories, by computing a couple
(w*, b*) per category. Observe, however, that this leads to non-comparable scores
between categories. Among all boxes affected to each class, a non-maximal sup-
pression (NMS) algorithm is then applied in order to avoid redundant detections.
The resulting multiple instance learning method is called MI-max.

3.2 Implementation details

Faster R-CNN We use the detection network Faster R-CNN [42]. We only keep
its region proposal part (RPN) and the features corresponding to each proposed
region. In order to yield and efficient and flexible learning of new classes, we
choose to avoid retraining or even fine-tuning. Faster R-CNN is a meta-network
in which a pre-trained network is enclosed. The quality of features depends on
the enclosed network and we compare several possibility in the experimental
part.

Images are resized to 600 by 1000 before applying Faster R-CNN. We only
keep the 300 boxes having best ”objectness” scores (after a NMS phase), along
with their high-level featuresﬂ An example of extracted boxes is shown in figure
About 5 images per second can be obtained on a standard GPU. This part
can be performed offline since we don’t fine-tune the network.

As mentioned in [30], residual network (ResNet) appears to be the best archi-
tecture for transfer learning by feature extractions among the different ImageNet
models, and we therefore choose these networks for our Faster R-CNN versions.
One of them (denoted RES-101-VOCO07) is a 101 layers ResNet trained for the
detection task on PASCAL VOC2007. The other one (denoted RES-152-COCO)
is a 152 layers ResNet trained on MS COCO [34]. We will also compare our ap-
proach to the plain application of these networks for the detection tasks when
possible, that is when they were trained on classes we want to detect. We refer
to these approaches as FSD (fully supervised detection) in our experiments.

For implementation, we build on the Tensorﬂowﬂ implementation of Faster
R-CNN of Chen and al. [7]

MI-max When a new class is to be learned, the user provides a set of weakly
annotated images. The MI-max framework described above is then run to find a
linear separator specific to the class. Note that both the database and the library
of classifiers can be enriched very easily. Indeed, adding an image to the database
only requires running it through the Faster R-CNN network and adding a new
class only requires a MIL training.

For training the MI-max, we use a batch size of 1000 examples (for smaller
sets, all features are loaded into the GPU), 300 iterations of gradient descent

3 The layer fc7 of size M = 2048 in the ResNet case, often called 2048-D.
* |https://www.tensorflow.org/
® Code can be found on GitHub https://github.com/endernewton /tf-faster-rennl
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Fig. 2. Some of the regions of interest generated by the region proposal part (RPN) of
Faster R-CNN.

with a learning rate of 0.01 and € = 0.01 . The whole process takes 750s for 20
classes on PASCAL VOCOT trainval (5011 images) with 12 random start points
per class, on a consumer GPU (GTX 1080T1i). Actually the random restarts are
performed in parallel to take advantage of the presence of the features in the
GPU memory since the transfer of data from central RAM to the GPU memory
is a bottleneck for our method. The 20 classes can be learned in parallel.

For the experiments of Section[£.3] we also perform a grid search on the hyper-
parameter C by splitting the training set into training and validation sets. We
learn several couples (w,b) for each possible value of C (different initialisation)
and the one that minimises the loss @) for each class is selected.

4 Experiments

In this section, we perform weakly supervised detection experiments on different
databases, in order to illustrate different assets of our approach.

In all cases, and besides other comparisons, we compare our approach (MI-
max) to the following baseline, which is actually the approach chosen for the
detection experiments in [I1] (except that we do not perform box expansion):
the idea is to consider that the region with the best ”objectness” score is the
region corresponding to the label associated to the image (positive or negative).
This baseline will be denoted as MAX. Linear-SVM classifier are learnt using
those features per class in a one-vs-the-rest manner. The weight parameter that
produces the highest AP (Average Precision) score is selected for each class
by a cross validation methocﬂ and then a classifier is retrained with the best
hyper-parameter on all the training data per class. This baseline requires to
train several SVMs and is therefore costly.

5 We use a 3-fold cross validation while [I1] use constant training and validation set.
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At test time, the labels and the bounding boxes are used to evaluate the
performance of the methods in term of AP par class. The generated boxes are
filtered by a NMS with an Intersection over Union (IoU) [17] threshold of 0.3
and a confidence threshold of 0.05 for all methods.

4.1 Experiments on PASCAL VOC

Before proceeding with the transfer learning and testing our method on paint-
ings, we start with a sanity check experiment on PASCAL VOC2007 [I7]. We
compare our weakly supervised approach, MI-max, to the plain application of the
fully supervised Faster R-CNN [42] and to the weakly supervised MAX proce-
dure recalled above. We perform the comparison using two different architectures
(for the three methods), RES-101-VOC07 and RES-512-COCO, as explained in
the previous section.

Table 1. VOC 2007 test Average precision (%). Comparison of the Faster R-CNN
detector (trained in a fully supervised manner : FSD) and our MI-max algorithm
(trained in a weakly supervised manner) for two networks RES-101-VOCO07 and RES-
152-COCO.

‘ Net ‘ Method ‘acro bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv ‘ mean ‘
RES- | FSD [26] [73.6 82.3 75.4 64.0 57.4 80.2 86.5 86.2 52.7 85.2 66.9 87.0 87.1 82.9 81.2 45.7 76.8 71.2 82.6 75.5|  75.0
101- MAX |20.8 47.0 26.1 20.2 8.3 41.1 44.9 60.1 31.7 54.8 46.4 42.9 62.2 58.7 20.9 21.6 37.6 16.7 42.0 19.8|  36.2

VOCO07 MI—ma)[l 63.5 78.4 68.5 54.0 50.7 71.8 85.6 77.1 52.7 80.0 60.1 78.3 80.5 73.5 74.7 37.4 71.2 65.2 75.7 67.7|68.3 + 0.2
RES- | FSD [26] [91.0 90.4 88.3 61.2 77.7 92.2 82.2 93.2 67.0 89.4 65.8 88.0 92.0 89.5 88.5 56.9 85.1 81.0 89.8 85.2|  82.7
152- |MAX [I1]|58.8 64.7 52.4 8.6 20.8 55.2 66.8 76.1 19.4 66.3 6.7 59.7 56.4 43.3 15.5 18.3 80.3 7.6 71.8 32.6| 44.1

COCO | MI-max” [88.0 90.2 84.3 66.0 78.7 93.8 92.7 90.7 63.7 78.8 61.5 88.4 90.9 88.8 87.9 56.8 75.5 81.3 88.4 86.1|81.6 + 0.3

As shown in Table |1 our weakly supervised approach (only considering an-
notations at the image level E[) yields performances that are only slightly below
the ones of the fully supervised approach (using instance-level annotations). On
the average, the loss is only 1.1% of mAP when using RES-512-COCO (for both
methods). The baseline MAX procedure (used for transfer learning on paintings
in [I0]) yields notably inferior performances.

4.2 Detection evaluation on Watercolor2k and People-Art databases

We compare our approach with two recent methods performing object detection
in artworks, one in a fully supervised way [52] for detecting people, the other
using a (partly) weakly supervised method to detect several VOC classes on wa-
tercolor images [28]. For the learning stage, the first approach uses instance-level
annotations on paintings, while the second one uses instance-level annotations on
photographs and image-level annotations on paintings. In both cases, it is shown
that using image-level annotations only (our approach, MI-max) only yields a
light loss of performances.

" It is the average performance on 100 runs of our algorithm.
8 However, observe that since we are relying on Faster R-CNN, our system uses a
subpart trained using class agnostic bounding boxes.
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Experiment 1 : Watercolor2k This database, introduced in [28], and avail-
able onlineﬂ is a subset of watercolor artworks from the BAM! database [53]
with instance-level annotations for 6 classes (bike, bird, dog, cat, car, person)
that are included in the PASCAL VOC, in order to study cross-domain transfer
learning. On this database, we compare our approach to the methods from [28]
and from [4], to the baseline MAX discussed above, as well as to the classical
MIL approach MI-SVM [I] (using a maximum of 50 iterations and no restarts).

In [28], a style transfer transformation (Cycle-GAN [56]) is applied to natural
images with instance-level annotation. The images are transferred to the new
modality (i.e. watercolor) in order to fine-tune a detector pre-trained on natural
images. This detector is used to predict localisation of objects on watercolor
images annotated at the image level. The detector is then fine-tuned on those
images in a fully supervised manner. Bilen and Vedaldi [4] proposed a Weakly
Supervised Deep Detection Network (WSDDN), which consists in transforming a
pre-trained network by replacing its classification part by a two streams network
(a region proposal stream and a classification one) combined with a weighted
MIL pooling strategy.

Table 2. Watercolor2k (test set) Average precision (%). Comparison of the pro-
posed MI-max method to alternative approaches.

’ Net ‘ Method ‘bike bird car cat dog person| mean
VGG WSDDN [4] Ezl 1.5 26.014.6 0.4 0.5 33.3 12.7
SSD DT+PL [28] 76.5 54.9 46.0 37.4 38.5 72.3 54.3

MAX [11] 74.0 34.5 26.8 17.8 21.5 21.0 32.6
MI-SVM [I] |66.8 23.5 6.7 13.0 8.4 14.1 22.1

| [MI-max [Our] |"[85.2 48.2 49.2 31.0 30.0 57.0 [50.1 + 1.1

RES-152-COCO

From Table [2| one can see that our approach performs clearly better than
the other ones using image-level annotations only ([4], MAX, MI-SVM). We also
observe only a minor degradation of average performances (54.3 % versus 48.9
%) with respect to the method [28], which is retrained using style transfer and
instance-level annotations on photographs.

Experiment 2 : People-Art This database, introduced in [52], is made of
artistic images and bounding boxes for the single class person. This database
is particularly challenging because of its high variability in styles and depic-
tion techniques. The method introduced in [52] yields excellent detection perfor-
mances on this database, but necessitates instance-level annotations for training.
The authors rely on Fast R-CNN [24], of which they only keep the three first

9 lhttps://github.com/naoto0804 /cross-domain-detection
10 The performance come from the original paper [28].
11 Standard deviation computed on 100 runs of the algorithm.
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layers, before re-training the remaining of the network using manual location
annotations on their database.

In Table |3 one can see that our approach MI-max yields detection results
that are very close to the fully supervised results from [52], despite a much
lighter training procedure. In particular, as already explained, our procedure can
be trained directly on large, globally annotated database, for which manually
entering instance-level annotations is tedious and time-costly.

Table 3. People-Art (test set) Average precision (%). Comparison of the proposed
MI-max method to alternative approaches.

l Net [ Method [ person ‘
Fast R-CNN (VGG16)[Fine tuned [52]~ 59
MAX [11] 25.9
RES-152-COC0O MI-SVM [1] 13.3

| RES-152-COCO | MI-max [Our] [55.4 + 0.7

4.3 Detection on IconArt database

In this last experimental section, we investigate the ability of our approach
to learn and detect new classes that are specific to the analysis of artworks,
some of which cannot be learnt on photographs. Typical such examples in-
clude iconic characters in certain situations, such as Child Jesus, the crucifix-
ion of Jesus, Saint Sebastian, etc. Although there has been a recent effort to
increase open-access databases of artworks by academia and/or museums work-
force [BTITOBTIB6I48/44YT638], they usually don’t include systematic and reliable
keywords. One exception is the database from the Rijkmuseum, with labels based
on the IconClass classification system [27], but this database is mostly composed
of prints, photographs and drawings. Moreover, these databases don’t include
the localisation of objects or characters.

In order to study the ability of our (and other) systems to detect iconographic
elements, we gathered 5955 painting images from Wikicommonﬂ ranging from
the 11th to the 20th century, which are partially annotated by the WikidataE
contributors. We manually checked and completed image-level annotations for 7
classes. The dataset is split in training and test sets, as shown in Table [4l For
a subset of the test set, and only for the purpose of performance evaluation,
instance-level annotations have been added. The resulting database is called
TconArt?] Example images are shown in Figure [3] To the best of our knowl-
edge, the presented experiments are the first investigating the ability of modern

12 The performance come from the original paper.

13 lhttps: / /commons.wikimedia.org/wiki/Main_Page

1 https://www.wikidata.org/wiki/Wikidata:Main_Page

!5 The database is available online https://wsoda.telecom-paristech.fr/downloads/
dataset/IconArt_v1.zip.
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detection tools to classify and detect such iconographic elements in paintings.
Moreover, we investigate this aspect in a weakly supervised manner.

Class Angel|Child Jesus|Crucifixion|Mary |nudity|ruins|Saint Sebastian|None|Total

Train 600 755 86 1065 | 956 | 234 75 947 | 2978

Test for classification| 627 750 107 1086| 1007 | 264 82 924 12977
Test for detection | 261 313 107 446 | 403 | 114 82 623 | 1480
Number of instances | 1043 320 109 502 | 759 | 194 82 3009

Table 4. Statistics of the IconArt database

Fig. 3. Example images from the IconArt database. Angel on the first line, Saint Se-
bastian on the second. We can see some of the challenges posed by this database: tiny
objects, occlusions and large pose variability.

To fix ideas on the difficulty of dealing with iconographic elements, we start
with a classification experiment. For this, we use the same classification approach
as in [10], using InceptionResNetv2 [49] as a feature extractoﬁ We also perform
classification-by-detection experiments, using the previously described MAX ap-
proach (as in [I1]) and our approach, MI-max. In both cases, for each class, the
score at the image level is the highest confidence detection score for this class
on all the regions of the image. Results are displayed in Table [5| First, we ob-
serve that classification results are very variable depending on the class. Classes
such as Jesus Child, Mary or crucifixion have relatively high classification scores.
Others, such as Saint Sebastian, are only scarcely classified, probably due to a
limited quantity of examples and a high variability of poses, scales and depiction
styles. We can also observe that, as mentioned in [I1], the classification by de-
tection can provide better scores than global classification, possibly because of

16 Only the center of the image is provided to the network and extracted features are
1536-D.
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small objects, such as angels in our case. Observe that these classification scores
can probably be increased using multi-scale learning (as in [51]), augmentation
schemes and an ensemble of networks [11].

Table 5. IconArt classification test set classification average precision (%).

‘ Net ‘ Method ‘angel JCchild crucifixion Mary nudity ruins StSeb‘ mean ‘
InceptionResNetv2 [49] 441  T7.2 57.8 81.1 774 746 26.8 62.7
MAX [11] 49.3 747 30.3 67.5 574 432 7.0 47.1
RES-152-COCO MI-max [Our] |57.4 60.7 79.9 704 65.3 45.9 17.0 |56.7 £ 1.0
MI-max-C [Our]| 61.0 68.9 80.2 714 66.3 51.7 14.8 159.2 + 1.2

Next, we evaluate the detection performance of our method, first with a
restrictive metric : AP per class with an IoU >0.5 (as in all previous detection
experiments in this paper), then with a less restrictive metric with IoU >0.1.
Results are displayed in Table[6] Results on this very demanding experiment are a
mixed-bag. Some classes, such as crucifixion, and to a less extend nudity or Jesus
Child are correctly detected. Others, such as angel, ruins or Saint Sebastian,
hardly get it up to 15% detection scores, even when using the relaxed criterion
IoU >0.1. Beyond a relatively small number of examples and very strong scale
and pose variations, there are further reasons for this :

— The high in-class depiction variability (for Saint Sebastian for instance)
— The many occlusions between several instances of a same class (angel)

— The fact that some parts of an object can be more discriminative than the
whole object (nudity)

Table 6. IconArt detection test set detection average precision (%). All methods
based on RES-152-COCO.

| Method [ Metric [angel JCechild crucifixion Mary nudity ruins StSeb[ mean ‘
MAX [T AP IoU >0.5| 1.4 3.9 74 28 39 03 09 2.9
? AP ToU >0.1] 10.1  36.2 28.2 184 140 16 238 15.9
>
MI-max [Our] AP IoU >0.5| 0.3 0.9 37.3 38 212 0.5 109 |10.7 £1.7

AP IoU >0.1| 6.4 25.3 74.4 446 309 6.8 172294 £ 1.7
AP IoU >0.5| 3.0 17.7 32.6 48 235 1.1 96 |13.2+ 3.1
AP IoU >0.1|12.3  41.2 74.4 46.3 31.2 13.6 16.1 [33.6 £ 2.2

MI-max-C [Our]

Ilustrations of successes and failures are displayed, respectively on Figures
and [5] On the negative examples, one can see that often a larger region than
the element of interest is selected or that a whole group of instances is selected
instead of a single one. Future work could focus on the use of several couples
(w,b) instead of one to prevent those problems.
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Fig. 4. Successful examples using our MI-max-C detection scheme. We only show boxes
whose scores are over 0.75.

Fig. 5. Failure examples using our MI-max-C detection scheme. We only show boxes
whose scores are over 0.75.

5 Conclusion

Results from this paper confirm that transfer learning is of great interest to
analyse artworks databases. This was previously shown for classification and fully
supervised detection schemes, and was here investigated in the case of weakly
supervised detection. We believe that this framework is particularly suited to
develop tools helping art historians, because it avoids tedious annotations and
opens the way to learning on large datasets. We also show, in this context,
experiments dealing with iconographic elements that are specific to Art History
and cannot be learnt on natural images.

In future works, we plan to use localisation refinement methods, to further
study how to avoid poor local optima in the optimisation procedure, to add
contextual information for little objects, and possibly to fine-tune the network
(as in [I5]) to learn better features on artworks. Another exciting direction is
to investigate the potential of weakly supervised learning on large databases
with image-level annotations, such as the ones from the Rijkmuseum [44] or the
French Museum consortium [43].
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