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Abstract. Moving object detection is an imperative task in computer
vision, where it is primarily used for surveillance applications. With the
increasing availability of low-altitude aerial vehicles, new challenges for
moving object detection have surfaced, both for academia and industry.
In this paper, we propose a new approach that can detect moving objects
efficiently and handle parallax cases. By introducing sparse flow based
parallax handling and downscale processing, we push the boundaries of
real-time performance with 16 FPS on limited embedded resources (a
five-fold improvement over existing baselines), while managing to per-
form comparably or even improve the state-of-the-art in two different
datasets. We also present a roadmap for extending our approach to ex-
ploit multi-modal data in order to mitigate the need for parameter tun-
ing.

Keywords: Moving object detection, optical flow, UAV, drones, em-
bedded vision, real-time vision

1 Introduction

Ranging from high-altitude Unmanned Aerial Vehicles (UAV) capable of flying
at 65,000 feet 5 to low-altitude miniature drones, long-endurance variants to mi-
cro air vehicles weighing just a few grams 6, UAV industry has gone through
a meteoric rise. Owing to their ever increasing availability in civilian and mil-
itary sectors alike, UAV variants have been disruptive in the last decade and

5http://www.boeing.com/defense/phantom-eye/
6https://aerixdrones.com/products/vidius-the-worlds-smallest-fpv-drone
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consequently found use in several applications, such as disaster relief, precision
agriculture, cinematography, cargo delivery, industrial inspection, mapping, mil-
itary surveillance and air support [1].

Following the industrial attention, academic community also contributed to
the transformation of UAVs in various aspects, such as aerodynamics, avion-
ics and various sensory data acquired by said platforms. Slightly different than
remote sensing domain, drone-mounted imagery has paved the way for new re-
search in computer vision (CV). There has been a large quantity of studies
reported in object detection [2–6], action detection [7], visual object tracking [8–
10], object counting [11] and road extraction [12]. In recent years, new datasets
[7, 13–17], challenges and dedicated workshops [18, 19] have surfaced to bridge
the gap between drone-specific vision problems and their generic versions.

From a practical perspective, low-altitude drones introduce several new prob-
lems for CV algorithms. Proneness to sudden platform movements and exposure
to environmental conditions arguably affect low-altitude drones in a more pro-
nounced manner compared to their high-altitude counterparts. Moreover, fast-
changing operating altitudes and camera viewpoints result into the generation
of data with a large diversity, which inherently furthers the complexity of vir-
tually any vision problem. Their small-sized nature also impose severe limits on
the availability of computational resources installed on-board, which calls for
non-trivial engineering solutions [20, 21].

Moving object detection (MOD), primarily used for surveillance purposes,
is a long-standing problem in CV and has been the subject of many studies
[22–24]. Due to the presence of platform motion in drone vision, it becomes a
notorious problem, where platform motion can easily be confused with moving
regions/objects. Several solutions addressing platform motion issue have been re-
ported [25, 26]. Moreover, low-altitude drone cases also suffer from severe motion
parallax which causes objects closer to camera move faster than objects further
away. Solutions provided for motion parallax issue is considered computation-
ally expensive [27–29, 17], which makes the solutions even harder especially when
on-board processing with (near) real-time performance is a hard constraint.

In this paper, we propose a new approach for moving object detection, pri-
marily optimized for embedded resources for on-board functionality. We make
two main contributions; first, we show that performing a large portion of our
pipeline in lower resolutions significantly improve the runtime performance while
keeping our accuracy high. Second, we design the matching part of the parallax
handling scheme using a simple sparse-flow based technique which avoids the
bottlenecks such as failing to extract features from candidate objects or infe-
rior feature matching. Its sparse nature also contributes to further speed-ups,
pushing further to real-time performance on embedded platforms.

The paper is organized as follows. In Section 2, related work in the litera-
ture is reviewed. The proposed approach is explained thoroughly in Section 3.
Experimental results and their analysis are reported in Section 4. We conclude
our work by drawing insights and making future recommendations in Section 5.
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2 Related Work

The research community has contributed to moving object detection literature
considerably over the last few decades. Earlier studies aimed to solve this problem
for static cameras, where background subtraction [22] and temporal differencing
[30] based solutions slowly transformed into more sophisticated approaches such
as background learning via Mixture of Gaussians, Eigen backgrounds and motion
layers [31, 32]. As mobile platforms started to emerge, a new layer of complexity
was introduced; ego-motion. The presence of ego-motion renders obsolete the
approaches devised for static cameras, as the platform motion is likely to produce
quite a few false positives. Moreover, this problem becomes more pronounced
when platform motion is sudden.

A simple method to tackle platform-motion induced false positives is to per-
form image alignment as a preprocessing step. By finding the affine/perspective
transformation between two consecutive images, one can warp an image onto
another and then perform temporal differencing. Primarily named as “feature-
based” methods, such methods depend on accurate image alignment where ac-
curate feature keypoint/descriptor computation is imperative [33]. Another ap-
proach to solve ego-motion in such cases can be referred as “motion-based”,
where motion layers [32] and optical flow [26] techniques are utilized. In cases
where planar surface assumption (if any) does not hold, the perspective trans-
formation based warping fails to handle motion parallax induced false positives.
Unlike high-altitude scenarios, motion parallax becomes a severe problem in im-
agery taken from the ground as well as low-altitude UAV imagery. There are
studies in the literature using various geometric constraints and flow-based so-
lutions which claim to mitigate the effects of motion parallax [27, 34].

Building on the simple solutions reported above, several high impact studies
have been reported in recent years. Based on their previous study [34], in [35]
authors propose a new method that is related with the projective structure
between consecutive image planes, which is used in conjunction with epipolar
constraint. This new constraint is useful to detect the moving objects which
move along the same direction with the camera, which is a configuration epipolar
constraint misses to detect. Assessed using airborne videos, authors state abrupt
motion or medium-level parallax might be detrimental to the efficacy of their
algorithm. Authors of [36] tackle moving object detection for ground robots,
where they use epipolar constraint along with a motion estimation mechanism
to handle degenerate cases (camera and platform move to the same direction) in
a Bayesian framework. Work reported in [27] handles moving object detection
by using epipolar and flow-vector bound constraints, which facilitates parallax
handling as well as degenerate cases. Authors estimate the camera pose by using
Parallel Tracking and Mapping technique. Similar methods have been reported
in [37] and [17], where both algorithms target low altitude imagery but the latter
handles parallax in an optimized manner.

In addition to feature based methods mentioned above, motion-based meth-
ods have also emerged. In [28], authors fuse the sensory data with imagery to
facilitate moving object detection in the presence of ego-motion and motion par-
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allax. By using optical flow in conjunction with the epipolar constraint, authors
show they can eliminate parallax effects in videos taken from ground vehicles. In
work reported in [38], authors use a dense flow based method where optical flow
and artificial flow are assessed for their orientation and magnitude to find mov-
ing objects in aerial imagery. Another study using flow-based approaches is [39],
where authors use optical flow information along with a reduced Singular Value
Decomposition and image inpainting stages to handle parallax and ego-motion.
They present their results using sequences taken from aerial and ground vehicles.
In [40], authors use artificial flow and background subtraction together. They
formulate two scores; anomaly and motion scores where the former facilitates
good precision and the latter helps achieve improved recall values.

3 Our Approach

In this work, we propose a hybrid moving object detection pipeline which fuses
feature based and optical flow based approaches in an efficient manner for near
real time performance. In addition, we propose many minor improvements in the
pipeline for increasing processing speed as well as detection accuracy. Our pro-
posed pipeline is given in Figure 1. It is based on well studied ego-motion com-
pensation and plane-parallax decomposition approaches [17, 28, 34, 35, 41] and
divided into different process lines for ease of understanding.

3.1 Preprocessing and Ego-Motion Compensation

One of the most challenging parts of moving object detection from a drone is to
be able to detect varying size of objects from varying altitudes. In a background
subtraction and ego-motion compensation based system, such as ours, the easiest
way to cope with this variation is to be able to use varying length of time
difference between frames that are compared. Thus, as the very first stage of
our pipeline, we have implemented a dynamic frame buffer that changes its
size according to the height measurements read (when available) from the IMU
(Inertial Measurement Unit) as well as the users’ desire of detection sensitivity.
The size of the buffer, thus the time ∆ between frames that will be processed,
increases as the required sensitivity to detect smaller objects (and/or smaller
movements) increase. In our system, before pushing the frames into our buffer,
if the used camera is known and calibration is possible, we correct the lens
distortion (radial and tangential) as well.

Typical to the majority of computer vision systems, feature extraction and
matching take a significant time of our pipeline and form the bottleneck. Ad-
ditionally, we claim that calculating the homography between frames in high
resolution is not worth the loss in runtime. Therefore, we downscale the input
images for feature extraction and matching (using SURF [42]), and then cal-
culate the homographies between frames t, t −∆ and t −∆, t − 2∆. However,
to detect smaller objects, the rest of the pipeline runs on original resolution.
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Fig. 1: Our proposed moving object detection pipeline. Red boxes represent the
steps we build on other baselines. Green boxes represent steps that can be applied
where IMU and camera calibration parameters are available. Fo represents the
frame in original resolution and Hu represents upscaled homography.

t t - Δ t - 2Δ

... ...

center currentprevious

Fig. 2: Dynamic frame buffer. ∆ changes depending on required sensitivity.

To achieve this, the homographies calculated in lower resolution Hd are used to
calculate/estimate the original resolution homographies Hu using Equation 1.

Hu = Hd ∗ Pdo (1)
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where Pdo is the perspective transformation between the downscaled image and
original image.

3.2 Moving Object Detection

The calculated upscale homographies (Hu) are used for perspective warping (of
original image Fo) and three-frame differencing. As can be seen in Figure 2,
current and previous frames are warped on the center frame separately, and
two separate two-frame differences are calculated. These two-frame difference
results are then processed with an empirical threshold value, which produces a
binary image for each. Morphological operations are used to cancel noise and
associate pixels belonging to the same object. These two-frame differences (after
thresholding and morphological operations) are joined with a logical AND op-
eration to facilitate three-frame differencing. Resulting three-frame difference is
then subjected to a connected component analysis to create the object bounding
boxes.

3.3 Parallax Filtering

Especially for mini UAVs that operate typically under 150 metres, parallax can
be a significant problem. Without a dedicated algorithm, there might be many
false positives due to trees, buildings, etc. In the literature, using geometric con-
straints has proven to be an effective solution for eliminating parallax regions
[28, 17, 35, 27]. In these studies, either features that are extracted on candidate
moving objects are tracked/matched [17, 27] or each candidate pixel is densely
tracked/matched [28, 35] to be able to apply geometric constraints. Instead of
these, we propose a fast and efficient hybrid method that only tracks the center
locations of the candidate objects using sparse optical flow (via [43]). As can be
seen from Table 1, this method facilitates significant performance improvement
compared to feature tracking based methods. After tracking only the center loca-
tions of the candidate objects, we apply epipolar constraint on tracked locations.
As can be seen in Figure 3 and Figure 4, the benefits of tracking only object cen-
ters are two fold; epipolar constraint calculations are significantly reduced and
the requirement of having keypoints/features on a candidate object is removed.

In order to understand the epipolar constraint [44], assume that It−∆ and It
denote two images of a scene (taken by the same camera at different positions in
space) at times t−∆ and t, and P denote a 3D point in the scene. In addition,
let pt−∆ be the projection of P on It−∆, and pt be the projection of P on It.

In light of these, a unique fundamental matrix, represented by F t−∆
t , that

relates images It to It−∆ can be found, which satisfies

pit
T
F t−∆
t pit−∆ = 0, (2)

for all corresponding points pit−∆ and pit where i represents each unique image
point. In the case where P is a static point, it satisfies
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elt = F t
t−∆pit−∆, (3)

elt−∆ = F t−∆
t pit (4)

where elt−∆ and elt are epipolar lines corresponding to pt and pt−∆, respec-
tively. If P is a 3D static point, pt should be located on the epiline elt (see Figure
5a). Otherwise, P will not satisfy the epipolar constraint (see Figure 5b). One
exceptional case can occasionally rise, where the point of interest moves along
the epilines themselves. This occurs when the camera and the point of interest
move along the same direction (i.e. degenerate case).

If camera information required for camera calibration is available, essential
matrix instead of fundamental matrix can be used for more accurate results as
follows,

F ≡ K−T T̂RK−1 = K−TEK−1 (5)

where K denotes the camera calibration matrix, T̂ denotes the skew symmet-
ric translation matrix and R denotes the rotation matrix between corresponding
frames.

4 Experiments

4.1 Datasets

We evaluate our technique in a rigorous manner using two different configura-
tions. In the first one, we use the well-known VIVID [45] dataset. VIVID con-
sists of nine sequences, where three are thermal IR data and the rest are RGB.
VIVID annotations are available for every tenth frame and it contains annota-
tions for only one object in the scene. We use a select number of VIVID sequences
(egtest01-02-04-05) solely to compare our results with other algorithms. VIVID
is the most commonly used dataset for evaluating moving object detection al-
gorithms although it is intended for object tracking. Since VIVID is developed
for benchmarking tracking algorithms, only single object (even though multiple
moving objects exists) is annotated for each 10th frame.

Our second set of evaluation is performed using the publicly available LAMOD
dataset [17]. LAMOD consists of various sequences taken from two publicly avail-
able datasets, VIVID and UAV123 [16]. These sequences are hand-annotated
from scratch for each moving object present in the scene. Annotations are avail-
able for each frame and the dataset provides a large set of adverse effects, such
as motion parallax, occlusion, out-of-focus and altitude/viewpoint variation [17].

4.2 Results

Execution time. Improvements introduced in run-time performance by our
approach is primarily two folds; calculation of the features and homography
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(a) Example result for feature tracking on EgTest05.

(b) Example result for object center tracking with sparse optical flow on EgTest05.

Fig. 3: Visual comparison of feature tracking and object center tracking with
sparse optical flow in EgTest05. Note that there are multiple matches on some
of the objects which results on multiple epipolar constraint calculations.

at downscale and sparse optical flow based parallax filtering. We perform our
execution time analysis on NVIDIA Jetson TX1 and TX2 modules 7.

As expected, feature extraction in downscaled versions introduce significant
speed-ups. We observe that from 1280x720 resolution to 640x360, downscale
processing improves runtimes from 148 to 42 ms and 113 to 30 ms for TX1 and
TX2, respectively. As downscale processing effectively reduces the number of
extracted features, this also reflects on speed of feature matching. Comparing
1280x720 to 640x360 versions, speed of matching improves by the square of input
size ratios due to brute-force matching. We see matching speeds change from 146
to 8 ms and 106 to 6 ms (approximately 1700% improvement) for TX1 and TX2,
respectively. Sparse optical flow based parallax handling, compared to feature
based parallax handling, also introduces considerable execution time gains, as

7https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-
kits-modules/
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(a) Example result for feature tracking on one of our in-house captured videos.

(b) Example result for object center tracking with sparse optical flow on our in-house
captured video.

Fig. 4: Visual comparison of feature tracking and object center tracking with
sparse optical flow on our in-house captured video. Note that some objects may
not have features associated with them, therefore feature tracking (hence paral-
lax handling) may fail. This problem is mitigated by using optical flow.

shown in Table 1. TX1 results show an improvement of 20% to 25% whereas
TX2 results show improvements in between 18% to 20%.

Table 2 shows a detailed comparison of a recent technique [17] and our ap-
proach. A significant improvement up to 40% is observed for low resolution

ct-Δ ct

P

It-Δ It

elt-Δ el t

et-Δ e t

pt-Δ pt

(a) Static point

ct-Δ ct

Pt-Δ 

Pt 
It-Δ It

pt-Δ 
pt 

pt-Δ 

pt

elt-Δ el t

et-Δ e t

(b) Dynamic point

Fig. 5: Epipolar constraint. Image courtesy of [17].
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inputs, both with and without parallax filtering. For larger input resolutions,
improvements are in between 200% to 400%.

To support our claim that downscale processing does not lead to significant
degradation in accuracy, we also assess our pipeline with full high resolution op-
eration. We present results for original and downscaled operations for LAMOD
ground truths in Table 4. Results show a slight decrease in accuracy when com-
pared to high resolution. Except a maximum of 6% decrease in recall for egtest02,
we do not see any other significant decrease in accuracies. In fact, precision and
recall values do not even change in many cases, such as egtest04 recall and
egtest04 precision values.

Accuracy. We first evaluate our proposed approach using single object
ground truths of VIVID dataset to compare our performance with other baseline
algorithms. We use precision/recall as our metric and take a minimum of 50%
overlap to be a correct detection. As all the baseline algorithms have reported
their results in terms of correct detection ratio and miss detection ratio, we con-
vert these results to precision and recall for a better comparison (miss detection
ratio is effectively 1 − precision, whereas correct detection is ratio is equal to
precision). We do not report results for parallax handling for sequences EgTest01
and EgTest02 as they do not have parallax effects. Results are shown in Table
3.

Our proposed algorithm performs comparably to other baselines, even sur-
passing them in several sequences; EgTest01 and egtest02 results outperform all
others in precision, whereas our precision or recall values are the second best in

Table 1: Execution time of our proposed approach for different input resolutions.
Feat. indicates the version where features are extracted from candidate objects
for parallax filtering. O.F. indicates the version where objects centres are tracked
with sparse optical flow for parallax filtering.

640 x 480 1280 x 720

Feat. O.F. Feat. O.F.

TX1 115 ms 93 ms 176 ms 132 ms

TX2 76 ms 62 ms 108 ms 77 ms

Table 2: Execution time of our proposed approach for different input resolutions.
NF represents no parallax filtering, PF represents parallax filtering and ours

refer to our proposed approach.
640 x 480 1280 x 720

[17] Ours [17] Ours

TX1
NF 115 ms 70 ms 350 ms 102 ms

PF 175 ms 93 ms 450 ms 132 ms

TX2
NF 85 ms 52 ms 250 ms 64 ms

PF 140 ms 62 ms 350 ms 77 ms
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Table 3: Precision and recall values for 4 sequences in VIVID dataset with the
original single object tracking ground truth. We extrapolate the results of base-
lines as they do not provide numerical results directly. NF and PF represent
results without and with parallax filtering. Results in each row are precision and
recall (in percentage), respectively.

EgTest01 EgTest02 EgTest04 EgTest05

GMAC [46] 97.0 / 84.0 93.0 / 67.0 83.0 / 75.0 87.0 / 77.0
MIL [47] 92.0 / 79.0 98.0 / 76.0 33.0 / 20.0 35.0 / 16.0
OAB1 [48] 88.0 / 77.0 87.0 / 68.0 42.0 / 28.0 35.0 / 18.0
Castelli et al. [38] 86.0 / 84.0 — 93.0 / 90.0 85.0 / 82.0

Ours (NF) 99.4 / 97.2 98.6 / 56.9 76.0 / 77.0 73.0 / 80.0
Ours (PF) — — 78.0 / 62.0 83.0 / 66.0

Table 4: Precision and recall values for 4 sequences in VIVID dataset with multi
object moving object detection ground truth provided in LAMOD dataset. NF
and PF represent results without and with parallax filtering. Results in each
row are precision and recall (in percentage), respectively. Results indicated with
∗ calculate precision/recall for each frame and then average for entire sequence.
Results indicated with † represent the results of our technique when it operates
on original resolution images (no downscaling).

EgTest01 EgTest02 EgTest04 EgTest05

Logoglu et al. [17] ∗ 93.0 / 82.0 85.0 / 53.0 72.0 / 72.0 71.0 / 68.0

Ours (NF) ∗ 97.4 / 93.0 92.4 / 61.0 86.0 / 75.0 70.0 / 66.0
Ours (PF) ∗ — — 91.0 / 60.0 77.0 / 55.0

Ours (NF) † 96.8 / 92.2 92.6 / 59.5 85.0 / 72.0 66.0 / 63.0

Ours (PF) † — — 89.0 / 57.0 71.0 / 52.0
Ours (NF) 96.7 / 91.2 92.2 / 53.2 86.0 / 69.0 66.0 / 62.0
Ours (PF) — — 85.0 / 57.0 70.0 / 50.0

other sequences. Our method shines as it has close precision and recall values.
When we perform parallax handling, an expected reduction in recall is compen-
sated with an increase in precision, practically evening out or improving the final
F-score. It must be noted that nearly all baselines are effectively object trackers,
which means our algorithm performs quite accurately as we do not support our
detection with a sophisticated tracker.

We then assess our pipeline for multiple moving objects using LAMOD
dataset. We use precision/recall and per-frame precision/recall 8 (i.e. where pre-
cision and recall is calculated for every frame and then averaged) as our eval-
uation metric where 50% overlap is considered a detection. Similar to previous
section of our evaluation, we do not report parallax filtering results for EgTest01
and EgTest02. Exemplary results are visualized in Figure 6. Results are shown
in Table 4.

8Authors of [17] have reported their results with this metric, therefore we give these
results to compare our work.
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(a) EgTest01 frame 1266. (b) EgTest02 frame 1206.

(c) EgTest03 frame 285. (d) EgTest04 frame 1035.

Fig. 6: Detection results on 4 sequences of VIVID dataset. Green boxes are de-
tection results, blue boxes are ground truth data that are taken from LAMOD
dataset, grey boxes are candidate objects that are filtered by our parallax filter-
ing algorithm.

Results indicate our proposed algorithm significantly outperforms an existing
baseline [17] in all sequences except EgTest05. Parallax filtering introduces con-
siderable gains in precision and modest reductions in recall, as reported before.
This is expected as EgTest04 and EgTest05 have degenerate cases (i.e. objects
and the platform move along the same direction) and our approach currently
does not handle such cases. This leads to the elimination of true positives by
parallax filtering, thus the reduction in recall.

4.3 Multi-Modal Extension

In previous section, as we use public datasets where no IMU or camera infor-
mation is available, we can not fully utilise the adaptive algorithm we show in
Figure 1. This means we can not use lens distortion correction at all and we can
only use a fixed set of parameters (i.e. dynamic buffer size) for all sequences.
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In order to show how our pipeline works while utilising external sensory data,
we present some qualitative results with our in-house captured videos, where we
were able to acquire the relevant IMU and camera parameter information.

Lens Distortion Correction. Lens distortion distorts certain pixels to
other locations, radially or tangentially in our case, which directly effects our
results (see Figure 7 b)). This occurs as pixels are distorted to some other lo-
cation and during image registration, they are erroneously detected as moving
objects. By using radial and tangential coefficients specific to the camera lens,
this effect can be corrected. Such correction leads to visible improvements in our
performance (see Figure 7 d)).

Dynamic Frame Buffer. It can be hard to detect slowly moving objects in
high altitudes as their relative displacement in the image is not large. This can be
alleviated by using the height measurements provided by IMU; we dynamically
change the size of the buffer (namely the distance between the frames to be
differenced) linearly with the altitude. By doing so, we effectively amplify the
perceived movement of slow moving objects, thus making them highly detectable.
Exemplary results shown in Figure 8 c) and d) verify the said phenomena and
shows a visible improvement in recall.

(a) Thresholded three-frame difference
with no lens distortion correction.

(b) Detected moving objects without lens
distortion correction.

(c) Thresholded three-frame difference
with no lens distortion correction.

(d) Detected moving objects with lens dis-
tortion correction.

Fig. 7: The effect of lens distortion correction. Note that although the effects of
lens correction on input images may be almost imperceptible, it gives rise to
many pixel level errors.
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(a) 50 metre altitude. Dynamically ad-
justed buffer size.

(b) Example input image taken at 100 me-
tres.

(c) Image b) processed with a static buffer
size parameter used in subfigure a).

(d) Image b) processed with dynamically
adjusted buffer size.

Fig. 8: The effect of dynamic frame buffering. Note that dynamically adjusted
buffer size for 50 metre altitude works accurately for 50 metres, but fails at 100
metre altitude. Adaptively changing the buffer size for 100 metres significantly
improves our detection performance.

5 Conclusions

In this paper, we propose a new approach aimed at tackling moving object
detection problem for imagery taken from low-altitude aerial platforms. Capable
of handling the motion of the platform as well as the detrimental effects of
motion parallax, our approach performs parallax handling by sparse optical flow
based tracking along with epipolar constraint and performs a large portion of the
pipeline in lower resolutions. These two changes introduce significant runtime
improvements, reaching up to 16 FPS on embedded resources. Moreover, we
analyze our approach in two different datasets for single and multiple moving
object detection tasks. We observe that our results perform either comparably
or better than existing state-of-the-art algorithms. We also outline an advanced
pipeline capable of exploiting multi-modal data that might alleviate the need of
laborious parameter tuning. As future work, we aim to integrate a light-weight
scheme to alleviate the effect of degenerate motion cases. Should a dataset with
IMU and camera information become publicly available, we aim to assess our
approach in a multi-modal setting.
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