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Abstract. Visual recognition algorithms are required today to exhibit
adaptive abilities. Given a deep model trained on a specific, given task, it
would be highly desirable to be able to adapt incrementally to new tasks,
preserving scalability as the number of new tasks increases, while at the
same time avoiding catastrophic forgetting issues. Recent work has shown
that masking the internal weights of a given original conv-net through
learned binary variables is a promising strategy. We build upon this
intuition and take into account more elaborated affine transformations
of the convolutional weights that include learned binary masks. We show
that with our generalization it is possible to achieve significantly higher
levels of adaptation to new tasks, enabling the approach to compete with
fine tuning strategies by requiring slightly more than 1 bit per network
parameter per additional task. Experiments on two popular benchmarks
showcase the power of our approach, that achieves the new state of the
art on the Visual Decathlon Challenge.
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1 Introduction
A long-standing goal of AI is the ability to adapt an initial, pre-trained model to
novel, unseen scenarios. This is crucial for increasing the knowledge of an intel-
ligent system and developing effective life-long learning [41, 42, 38] algorithms.
While fascinating, achieving this goal requires facing multiple challenges. First,
learning a new task should not negatively affect the performance on old tasks,
avoiding the catastrophic forgetting phenomenon [6, 8]. Second, it should be
avoided adding multiple parameters to the model for each new task learned, as
it would lead to poor scalability of the framework [31]. In this context, while deep
learning algorithms have achieved impressive results on many computer vision
benchmarks [17, 11, 7, 22], mainstream approaches for adapting deep models to
novel tasks tend to suffer from the problems mentioned above.

Different works addressed these problems by either considering regularization
techniques [21, 14] or task-specific network parameters [36, 31, 34, 24, 25]. Inter-
estingly, in [25] the authors effectively addressed sequential multi-task learning
by creating a binary mask for each task. This mask is then multiplied by the
main network weights, determining which of them are useful for addressing the
new task and requiring just one bit for each parameter per task.
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Our paper takes inspiration from this last work. We formulate sequential
multi-task learning as the problem of learning a perturbation of a baseline, pre-
trained network, maximizing the performance on a new task. As opposed to [25],
we apply an affine transformation to each convolutional weight of the baseline
network, involving both a learned binary mask and few additional parameters.
Our solution allows to: 1) boosting the performance of each task-specific network,
by leveraging the higher degree of freedom in perturbing the baseline network;
2) keeping a low per-task overhead in terms of additional parameters (slightly
more than 1 bit per parameter per task). We assess the validity of our method
on standard benchmarks, achieving performances comparable with fine-tuning
separate networks for each task.

2 Related works
The keen interest on incremental and life-long learning methods dates back to
the pre-convnet era, with shallow learning approaches ranging from large margin
classifiers [18, 19] to non-parametric methods [27, 33].

Recently, various works have addressed these problems within the framework
of deep architectures [31, 10, 1]. A major risk when training a neural network on
a novel task is to deteriorate its performances on old tasks, discarding previous
knowledge, a phenomenon called catastrophic forgetting [26, 6, 8]. To alleviate
this issue, various works designed constrained optimization procedures taking
into account the initial network weights, trained on previous tasks. In [21], the
authors exploit knowledge distillation [13] to obtain target objectives for previous
tasks, while training for novel ones. In [14] the authors design an update of the
network parameters, based on their importance for previously seen tasks.

Recent methods achieved higher performances with the cost of adding task
specific parameters for each newly learned task, keeping untouched the initial
network parameters. The extreme case is [36], where a parallel network is added
each time a new task is presented. In [31, 32], task-specific residual components
are added in standard residual blocks. In [34] the authors use controller mod-
ules where the parameters of the base architecture are recombined channel-wise.
In [24] a different subset of network parameters is considered for each task. A
more compact and effective solution is [25], where separate binary masks are
learned for each novel task and multiplied to the original network weights. The
binary masks determine which parameters are useful for the new task and which
are not. We take inspiration from this last work but we use the binary masks
to design task specific affine transformations through. This allows us to use a
comparable number of parameters per task with increased flexibility, further
reducing the gap with the individual end-to-end trained architectures.

3 Method
We address the problem of sequential multi-task learning, as in [25], i.e. we
modify a baseline network such as, e.g. ResNet-50 pretrained on the ImageNet
classification task, so to maximize its performance on a new task, while limiting
the amount of additional parameters needed. The solution we propose exploits
the key idea from Piggyback [25] of learning task-specific masks, but instead
of pursuing the simple multiplicative transformation of the parameters of the
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baseline network, we define a parametrized, affine transformation mixing a bi-
nary mask and real parameters. This choice keeps a low per-task overhead while
significantly increases the expressiveness of the approach, leading to a rich and
nuanced ability to adapt the old parameters to the needs of the new tasks.

3.1 Overview
Let us assume to be given a pre-trained, baseline network f0(·;Θ,Ω0) : X → Y0
assigning a class label in Y0 to elements of an input space X (e.g. images).1 The
parameters of the baseline network are partitioned into two sets: Θ comprises
parameters that will be shared for other tasks, whereas Ω0 entails the rest of the
parameters (e.g. the classifier). Our goal is to learn for each task i ∈ {1, . . . ,m},
with a possibly different output space Yi, a classifier fi(·;Θ,Ωi) : X → Yi. Here,
Ωi entails the parameters specific for the ith task, while Θ holds the shareable
parameters of the baseline network mentioned above. Before delving into the
details of our method, we review the Piggyback solution presented in [25].

Each task-specific network fi shares the same structure of the baseline net-
work f0, except for having a possibly, differently sized classification layer. All
parameters of f0, excepting the classifier, are shared across all the tasks. For
each convolutional layer2 of f0 with parameters W, the task-specific network fi
holds a binary mask M that is used to mask W obtaining

Ŵ = W ◦ M , (1)

where ◦ is the Hadamard product. The transformed parameters Ŵ are then used
in the convolutional layer of fi. By doing so, the task-specific parameters that
are stored in Ωi amount to just a single bit per parameter in each convolutional
layer, yielding a low overhead per additional task, while retaining a sufficient
degree of freedom to build new convolutional weights.

Proposed. Similarly to [25], we consider task-specific networks fi that are
shaped as the baseline network f0 and we store in Ωi a binary mask M for
each convolutional kernel W in the shared set Θ. However, we depart from the
simple multiplicative transformation of W used in (1), and consider instead an
affine transformation of the base convolutional kernel W that depends on a binary
mask M as well as additional parameters. Specifically, we transform W into

W̌ = k0W+ k11+ k2M , (2)

where kj ∈ R are additional task-specific parameters in Ωi that we learn along
with the binary mask M, and 1 is an opportunely sized tensor of 1s. We can
consider either a scale (k2) and bias (k1) parameter per convolutional kernel, or
distinct values for each feature channel.

Besides learning the binary masks and the parameters kj , we opt also for
task-specific batch-normalization (BN) parameters (i.e. mean, variance, scale
and bias), which will be part of Ωi, and thus optimized for each task, rather
than being fixed in Θ. In the cases where we have a convolutional layer followed
by BN, we keep the corresponding parameter k0 fixed to 1, because the output
of batch normalization is invariant to the scale of the convolutional weights.

1 We focus on classification tasks, but the proposed method applies also to other tasks.
2 Fully-connected layers are a special case.
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Fig. 1: Proposed model. An affine transformation scale and translate the binary
masks through the parameters k2 and k1 respectively. The obtained mask is
summed to the pretrained kernel in order to obtain the final task-specific weights.

The additional parameters introduced with our method bring a negligible per-
task overhead compared to Piggyback, which is nevertheless generously balanced
out by a significant boost of the performance of the task-specific classifiers.

3.2 Learning Binary Masks

We learn the parameters Ωi of each task-specific network fi by minimizing the
classification log-loss, given a training set, using standard, stochastic optimiza-
tion methods. However, special care should be taken for the optimization of the
binary masks. Instead of optimizing the binary masks directly, which would turn
the learning into a combinatorial problem, we apply the solution adopted in [25],
i.e. we replace each binary mask M with a thresholded real matrix R. By doing so,
we shift from optimizing discrete variables in M to continuous ones in R. However,
the gradient of the hard threshold function h(r) = 1r≥0 is zero almost every-
where, which makes this solution apparently incompatible with gradient-based
optimization approaches. To sidestep this issue we consider a strictly increasing,
surrogate function h̃ that will be used in place of h only for the gradient compu-
tation, i.e. if h′ denotes the derivative of h with respect to its argument, we use
h′(r) ≈ h̃′(r). The gradient obtained via the surrogate function has the property
that it always points in the right down hill direction in the error surface.

By taking h̃(x) = x, i.e. the identity function, we recover the workaround
suggested in [12], employed also in [25]. By taking h̃(x) = (1 + e−x)−1, i.e. the
sigmoid function, we obtain a better approximation, as suggested in [9, 2].

4 Experiments
Datasets. In the following we test our method on two different benchmarks. For
the first benchmark we follow [25], and we use 6 datasets: ImageNet [35], VGG-
Flowers [30], Stanford Cars [15], Caltech-UCSD Birds (CUBS) [43], Sketches [5]
and WikiArt [37]. These datasets contain a lot of variations both from the cate-
gory addressed (i.e. cars [15] vs birds [43]) and the appearance of their instances
(i.e. from natural images [35] to art paintings [37] and sketches [5]).

The second benchmark is the Visual Decathlon Challenge [31]. The goal of
this challenge is to use a single algorithm tackle 10 different classification tasks:
ImageNet [35], CIFAR-100 [16], Aircraft [23], Daimler pedestrian (DPed) [28],
Describable textures (DTD) [4], German traffic signs (GTSR) [40], Omniglot
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[20], SVHN [29], UCF101 Dynamic Images [3, 39] and VGG-Flowers [30]. A more
detailed description of the challenge can be found in [31]. For this challenge, an
independent scoring function is defined: the S-score [31]. This score takes into
account the performances of a model on all 10 tasks, preferring models with good
performances on all tasks to ones with peaked performances in few of them.

Networks and training protocols. For the first benchmark, we use a ResNet-
50, comparing our model with Piggyback [25], PackNet [24] and two baselines
considering the network only as feature extractor (training only the task-specific
classifier) and individual networks separately fine-tuned on each task. Since [24]
is dependent on the order of the task, we report the performances for two different
orderings [25]: starting from the model pre-trained on ImageNet, the first (→)
is CUBS-Cars-Flowers-WikiArt-Sketch while the second (←) is reversed. For
training, we followed the preprocessing, hyper-parameters and schedule of [25].

For the Visual Decathlon we employ the Wide ResNet-28 [44] adopted by
previous methods [31, 34, 25], using the same data preprocessing. For training
we choose the same hyper-parameters of [25], keeping the same values for all

the tasks except the ImageNet pretraining, for which we followed [31]. For both
benchmarks we employ h̃(x) = x as surrogate, initializing the real-valued masks
with uniform random values drawn between 0.0001 and 0.0002.

4.1 Results
ImageNet-to-Sketch. In the following we discuss the results obtained by our
model on the ImageNet-to-Sketch scenario. For fairness, since our model includes
task-specific BN layers, we report also the results of [25] with separate BN layers.

Results are shown in Table 1. Our model is able to fill the gap between the
classifier only baseline and the individual fine-tuned architectures, almost en-
tirely in all settings. For larger and more diverse datasets such as Sketch and
WikiArt, the gap is not completely covered, but the distance between our model
and the individual architectures is always less than 1%. These results are re-
markable given the simplicity of our method, not involving any assumption of
the optimal weights per task [24, 21], and the small overhead in terms of parame-
ters that we report in the row ”# Params” (i.e. 1.17), which represents the total
number of parameters (counting all tasks and excluding the classifiers) relative
to the ones in the baseline network. Comparing with the other algorithms, our
model consistently outperforms both the basic version of Piggyback and Pack-
Net in all settings. Introducing task-specific BN also for Piggyback reduces the
performance gap, which still remains large in some settings (i.e. Flowers, Cars):
this show how the advantages of our model are not only due to the additional
BN parameters, but also to the more flexible affine transformation introduced.

Both Piggyback and our model outperform PackNet and, as opposed to the
latter, do not suffer from the heavily dependence on the ordering of the tasks.
This advantage stems from having a learning strategy that is task independent,
with the base network not affected by the new tasks that are learned.

Visual Decathlon Challenge. In this section we report the results for the
Visual Decathlon Challenge. We compare our model with other sequential multi-
task learning methods: Piggyback [25] (PB), the improved version of the winner
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Table 1: Accuracy of ResNet-50 architectures in the ImageNet-to-Sketch setting.
Model ImageNet CUBS Cars Flowers WikiArt Sketch # Params

Classifier Only [25] 76.2 70.7 52.8 86.0 55.6 50.9 1

PackNet → [24] 75.7 80.4 86.1 93.0 69.4 76.2 1.10
PackNet ← [24] 75.7 71.4 80.0 90.6 70.3 78.7 1.10
Piggyback [25] 76.2 80.4 88.1 93.5 73.4 79.4 1.16
Piggyback+BN [25] 76.2 82.1 90.6 95.2 74.1 79.4 1.17
Ours 76.2 82.6 91.5 96.5 74.8 80.2 1.17

Individual Networks [25] 76.2 82.8 91.8 96.6 75.6 80.8 6

Table 2: Results in terms of accuracy and S-Score, for the Visual Decathlon
Challenge. Best model in bold, second best underlined.
Method #Params ImNet Airc. C100 DPed DTD GTSR Flwr. Oglt. SVHN UCF Mean S-Score Score/Params

Feature [31] 1 59.7 23.3 63.1 80.3 45.4 68.2 73.7 58.8 43.5 26.8 54.3 544 544
Finetune [31] 10 59.9 60.3 82.1 92.8 55.5 97.5 81.4 87.7 96.6 51.2 76.5 2500 250

RA[31] 2 59.7 56.7 81.2 93.9 50.9 97.1 66.2 89.6 96.1 47.5 73.9 2118 1059
DAN [34] 2.17 57.7 64.1 80.1 91.3 56.5 98.5 86.1 89.7 96.8 49.4 77.0 2852 1314
PA [32] 2 60.3 64.2 81.9 94.7 58.8 99.4 84.7 89.2 96.5 50.9 78.1 3412 1706
PB [25] 1.28 57.7 65.3 79.9 97.0 57.5 97.3 79.1 87.6 97.2 47.5 76.6 2838 2217
PB ours 1.28 60.8 52.3 80.0 95.1 59.6 98.7 82.9 85.1 96.7 46.9 75.8 2805 2191
Ours 1.29 60.8 51.3 81.9 94.7 59.0 99.1 88.0 89.3 96.5 48.7 76.9 3263 2529

entry of the 2017 edition of the challenge [34] (DAN), the network with task-
specific residual [31] (RA) and parallel [32] (PA) adapters. We additionally report
the baselines of [31]: the pre-trained network used as feature extractor (Feature)
and 10 different models fine-tuned on each task (Finetune). Moreover, we add
the results of our implementation of [25] with the same pre-trained model and
training schedule adopted for our method (PB ours).

The results are reported in Table 2. We can see that our simple model achieves
close to state-of-the-art performances on this competition. The only model out-
performing ours is [32]: however, we employ a much lower parameters overhead
and a single training schedule for all ten tasks. This produces a gain of more
than 800 points with respect to [32] in the ratio between the S-Score and the
number of parameters adopted. Remarkably, we obtain a gain on the previous
winning entry [34] and Piggyback of more than 400 points.

From the partial results, excluding the ImageNet baseline, our model achieves
the top-1 or top-2 scores in 4 out of 9 tasks, with comparable performances in the
others. The only exceptions are UCF-101 and Aircraft, where our model suffers a
high accuracy drop. Tuning the hyper-parameters could cover this gap, but this is
out of the scope of this work. Interestingly, while our model achieves comparable
(e.g. PB, DAN) average accuracy with respect to other approaches, it obtains
a much higher decathlon score. This highlights its capabilities of tackling all 10
tasks with good results, without peaked accuracies on just few of them.

5 Conclusions
We presented a simple yet powerful method for learning incrementally new tasks,
given a fixed, pre-trained deep architecture. We build on the intuition of [25], gen-
eralizing the idea of masking the original weights of the network with learned bi-
nary masks. By introducing an affine transformation that acts upon such weights,
we allow for a richer set of possible modifications of the original network,allowing
to better capture the characteristics of the new tasks. Experiments on two public
benchmarks confirm the effectiveness of our approach.
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