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Abstract. The emergence of relatively low cost UAVs has prompted a
global concern about the safe operation of such devices. Since most of
them can ’autonomously’ fly by means of GPS way-points, the lack of a
higher logic for emergency scenarios leads to an abundance of incidents
involving property or personal injury. In order to tackle this problem, we
propose a small, embeddable ConvNet for both depth and safe landing
area estimation. Furthermore, since labeled training data in the 3D aerial
field is scarce and ground images are unsuitable, we capture a novel
synthetic aerial 3D dataset obtained from 3D reconstructions. We use
the synthetic data to learn to estimate depth from in-flight images and
segment them into ’safe-landing’ and ’obstacle’ regions. Our experiments
demonstrate compelling results in practice on both synthetic data and
real RGB drone footage.
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1 Introduction

Nowadays, UAVs have become widely accessible without a substantial invest-
ment – anyone can fly a drone, for entertainment or business purposes that cover
different domains, such as agriculture or building construction and inspection.
Unfortunately, the safety mechanisms embedded on-board are often nonexistent
or short-distance oriented, based on ultrasound sensors or depth cameras. Long
distance safety abilities, such as ones based on LIDAR, come with an exorbitant
price and significant weight for small UAVs [17]. Fortunately, most commer-
cial drones have at least one on-board camera. Recent advances in embedded
GPUs enable low power and relatively low cost multi-FPS on-board operation
of convolutional neural networks (CNNs) [5], which could make possible high
performance computer vision and machine learning approaches.

We address the semantic segmentation of images into ’safe’ and potential
’obstacle’ regions. We define the problem as classifying surfaces into ’horizontal’,
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Fig. 1. Our pipeline for safe landing area and depth estimation. Starting from 3D
meshes, we extract RGB, depth, and safe landing labels. We train our proposed CNN
on synthetic data and validate our results on drone footage and report beyond real-time
results on an embedded device.

’vertical’ and ’other’ classes – termed HVO throughout the paper. Potential
safe landing areas correspond to the ’horizontal’ class, while the ’vertical’ and
’other’ categories correspond to zones which are likely obstacles or rough landing
regions.

Our first contribution is an embeddable CNN for depth, obstacles and safe
landing areas estimation. It has comparable performance with state-of-the-art
segmentation methods, while being up to 10 times faster and having more than
30 times less parameters.

We also experiment with the idea of processing the input image in two stages.
During the first stage we estimate depth and the ’safety’ class at the pixel level
using a different ConvNet pathway for each task. Since the two tasks are highly
interdependent, at the second stage we use the initial outputs of depth and
surface class (horizontal, vertical and other), as contextual input to second level
ConvNets that can now better re-estimate both depth and the safety category.
Thus, we aim to use the depth estimation in order to improve surface class
prediction and vice-versa.

The second contribution of our work is the introduction of a synthetic dataset
for safe landing, consisting of RGB, depth and horizontal/vertical/other labeled
image pairs. The dataset is available online, and can be used to reproduce the
results published here as well as improve them with further novelties. We use
3D-reconstructed urban and suburban areas for both automatic ground truth
depth extraction and HVO estimation. The pipeline for our approach is shown
in Figure 1.
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2 Related Work

Depth estimation Ground-level depth estimation is a very active research
topic, in terms of learning from unlabeled data ([20, 21, 29]), designing different
network architectures ([18, 24, 28]) and performing domain adaptation ([16, 2]).
Literature for depth estimation from aerial images is very sparse - [14] compares
various recent CNN architectures for low-height flight (< 20m). There is a very
large dataset with 3D information, TorontoCity [27]. Unfortunately it does not
include textures for buildings, most of the data being collected only for ground.
Estimating safe landing areas While most literature focuses on obstacle de-
tection [1], safe landing has been largely unaddressed for embedded use. While
some authors have proposed more traditional approaches, such as Naive Bayes
classifiers [19], others have tried histogram-based machine learning techniques [3].
No current solution makes use of the power of recent CNN breakthroughs. The
most similar to our work proposes a sophisticated pipeline [11], that generates
slope, surface normals and terrain roughness, but since it basically reconstructs
a 3D model of the ground using bundle adjustment, it takes a couple of seconds
on a desktop CPU for a small input image (300× 300 pixels) and is unsuitable
for on-board processing. In contrast, we learn a fast and relatively small CNN
to classify surface normals into three main categories (horizontal, vertical and
other), without needing to reconstruct an accurate 3D model.

3 Safe Landing Area Discovery

We aim to discover safe landing areas using RGB signal. We define the problem
as a pixel-wise semantic segmentation with 3 classes: ’horizontals’, ’verticals’ and
’others’. The horizontals correspond to areas which can be used for automatic
landing of UAVs or other aerial vehicles, such as planar ground or rooftops. At
the opposite spectrum, the verticals correspond to areas which can be though
of as obstacles, such as tall buildings, houses. In general, these are the areas
the UAV should stay the farthest off, both during flying as well as landing, to
avoid the damage and destruction of the machine. Since the world is not as
simple, containing only horizontals and verticals, we define a third class. In this
category fall objects such as trees, tilted rooftops, or various irregular shaped
objects. These areas can be considered safer for landing than pure verticals, in
cases where no horizontals are detected nearby, which can lead to a successful
landing in critical situations.

It should be noted that this is an oversimplification of the world, as we
assume no semantic knowledge. We are perfectly aware that a horizontal may
not be semantically safe, such as landing on water or a highway, however we
believe that building a low level knowledge of the world, using both depth and
HVO, can lead to better results when combined with higher level networks, such
as semantic segmentation or object detection, especially since this knowledge is
build using only RGB input, in real-time, on low-cost embedded hardware. This
is a key objective of this work.
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Fig. 2. Our proposed SafeUAV-Nets for both on-board and off-board processing,
trained for depth estimation and plane orientation prediction.

3.1 SafeUAV-Net for depth and plane orientation estimation

Starting with RGB images, we aim to predict depth and classify plane orientation
into three classes: horizontal, vertical and other. Our tasks are strongly related
to semantic segmentation as we predict a categorical value for each pixel of
the input image. For this purpose, we use a variant of the state-of-the-art U-
Net model proposed by [22] for aerial image segmentation. That particular CNN
demonstrated state of the art results on various aerial image segmentation tasks,
such as the detection of buildings and roads. Compared to previous work, we used
concatenation instead of sum for feature aggregation at the U-Net bottleneck
phase, in order to capture more information and increase the learning capacity of
the network. The role of the concatenation operation in DCNN has been studied
in [13] and the predictions produced by these networks were more accurate than
the ResNet-like skip connections [10].

Targeting an embedded application, we have developed two variants of the
network. The first, named SafeUAV-Net-Large below, runs at 35 FPS on Nvidia’s
Jetson TX2. The second, named SafeUAV-Net-Small below, is a simplified ver-
sion of the first, and runs at 130 FPS on an embedded device. For timing details,
as well as a comparison with classical architectures, see Section 6 and Table 5.
The detailed design of our architectures is described in Figure 2.

SafeUAV-Net-Large is a U-Net-like network [25] with three down-sampling
blocks, three up-scaling blocks and a central concatenated dilated convolutions
bottleneck, with progressively increasing dilation rates (1, 2, 4, 8, 16 and 32).
Each down-sampling block has two convolutional layers with stride 1, followed
by a 2×2 max pooling layer. Each up-scaling layer has a transposed convolution
layer, a feature map concatenation with the corresponding map from the down-
sampling layers and two convolutional layers with stride 1. The number of feature
maps are 32-64-128 for the down-sampling blocks and the other way around for
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the up-sampling ones. All kernels are 3× 3. Each dilated convolution outputs a
set of 256 activation maps.

SafeUAV-Net-Small follows the similar design principles as the large net - the
same number of up-scaling and down-sampling blocks and a central bottleneck
with the same dilation rates, but summed features. This way we reduce the
computational cost of applying costly convolutional operations over a large set
of filters. Each down-sampling block has two convolutional layers, one with stride
1 and the second with stride 2, in order to halve the input resolution. Each up-
scaling block has a single convolutional layer and a feature map concatenation
with its corresponding map. The number of feature maps are 16-32-64 for the
down-sampling blocks and the other way around for the up-sampling blocks. We
also reduced the number of filters outputted by each dilated convolution to 128.

Optimization. For the task of depth estimation, we normalize our ground
truth labels with values between 0 and 1 and then evaluate the performance of
our learning by measuring the L2 loss for our predictions compared to the refer-
ence labels. For safe-landing prediction, we used cross-entropy loss for optimizing
our models.

Training details. We used the Pytorch [23] deep-learning framework to
train our models. We trained our networks from scratch for 100 epochs each and
selected the best epoch, evaluated on our validation set, to report our results.
Fine-tuning of models was done for only 50 epochs. We used Adam optimizer,
starting with a learning rate of 0.001 for both networks and using a reduce-on-
plateau learning rate scheduler, with a factor of 0.1 and a patience of 10.

4 Dataset

4.1 Motivation

While the development of machine learning algorithms for drones and UAVs is
an increasingly popular domain, we are aware of no high resolution 3D dataset
specifically designed for this purpose. At ground level, there are many datasets
and benchmarks such as CityScapes [7] or KITTI [8], useful for training and
testing of computer vision applications (for example, in the case of self-driving
cars).

Safety laws, airspace regulations, as well as cost and technical reasons prevent
easy capturing and creation of a similarly exhaustive dataset from a bird’s-eye
viewpoint, one that would be better addressed towards UAV machine learning.
This is starting to change, thanks to efforts like VisDrone2018 [30] or Okutama-
Action [4]. However, most are centred around object detection problems. Those
datasets do not include additional channels apart from RGB and bounding boxes
for objects. For the tasks we are tackling in this paper, namely semantic seg-
mentation and depth estimation, we need a large amount of labeled data with
pixel-wise annotations for precise predictions.
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Fig. 3. A sample RGB image from each sub-dataset. From left to right, Suburban A,
Suburban B, Urban A and Urban B.

4.2 Approach

In this paper, we propose a different approach – one that has been similarly gain-
ing traction during the past years: working with computer-generated imagery
and labels. Restricting the subject to drones, [26] proposes the generation of
a virtual environment using the industry-targeted CityEngine [12] software and
produces promising results using real map data as a starting point. CityGML [15]
standardizes an exchange format for the storing of 3D models of cities or land-
scapes, and also offers a basic procedural modelling engine for generating random
buildings and cities.

However, the actual output of these systems is not yet realistic; there is no
mistaking that this is a virtual world and we therefore believe that the useful-
ness of these systems for training real-world scenarios is somewhat limited. In
contrast, for the purpose of this paper, we chose to construct our virtual dataset
with the help and power of the Google Earth [9] application and its real-world
derived 3D reconstructions. Up close or from ground level these reconstructions
are too coarse to be readily usable, but from a bird’s-eye view perspective, several
meters above ground, the surfaces and images captured begin to look life-like.

4.3 Dataset details

We capture a random series of sample images above rectangular patches of
ground, with a uniformly randomized elevation between 30 and 90 meters and
a stable 45 degree tilt angle. More precisely, the dataset consists of 11.907 sam-
ples in a 80% training (9.524) - 20% validation (2.383) distribution. We further
split the data by the type of area they cover, two separate urban areas and two
separate suburban ones. A selection of images from each sub-dataset is shown in
Figure 3. We chose these sets as we want to build a robust and diverse dataset
that is capable of generalizing over a wide range of environments, while still
being relevant to both the depth estimation and plane angle estimation tasks.

We collect two urban areas - Urban A of 3.5 km2 (3636 samples training,
909 validation) and Urban B covering ≈ 3.3 km2 (2873 samples training, 719
validation). For the suburban areas, we collect Suburban A of ≈ 1.7 km2 (1966
samples training, 492 validation) and Suburban B covering ≈ 1.1 km2 (1049
samples training, 263 validation).
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For each of these samples we extract a 640×480 pixels RGB image, an exact
depth measure for each pixel, and a semantically labelled image that specifies if
a surface is either vertical, horizontal or sloped (other) – HVO estimation.
HVO extraction method. We want to generate ground truth label images,
but the 3D model we have as a base is still far from perfect, containing many
reconstruction errors and stray polygons in otherwise smooth surfaces. We thus
approximate plane inclination in three phases1:

1. We calculate polygon surface normals and define a maximum error of 10
degrees for horizontals (H) and 20 degrees for verticals (V), while throwing
everything else in the sloped bin (O).

2. We pass through the O set and switch polygons to either H or V if (a) their
neighbouring polygons in a cubic window are mostly of the same type and
(b) the current polygon’s surface normal has a more permissive maximum
error of 20 degrees for H or 30 degrees for V – we also selectively ignore H
surfaces in the V window and vice-versa, as this helps handling 90 degrees
corners properly.

3. We similarly pass through the H or V sets and switch polygons to the O
set if their neighbouring polygons are mostly sloped. We do this processing
because, as previously mentioned, the actual surface model is a noisy one
and we wish to identify large patches that are consistently straight (H or V)
while ignoring everything that we are either unsure of, either represents a
true complex structure that is difficult to classify (O).

Having all our polygons now labeled, we color-code each class and generate
a second surface model having the same geometry as the first, but whose face
textures now represent semantic information. We can now capture all the images
we need, using exactly the same viewpoint for each image in our sample. Lastly,
as images from this second model are relatively coarse due to the hard cuts
between polygons, we apply a simple post-processing step for smoothing them.
We relabel each pixel to have the class that is dominant in a 5×5 pixels window.
Dataset realism and quality. The dataset consists of 3D reconstructions from
real RGB images. However, due to the ill-posed algorithmic problem of recon-
struction, limited resolution and sampling distance, the quality of the reconstruc-
tions is not ideal - almost no building facade is vertical, the texture mapping
fails to accurately match object geometry and overall, clustering verticals and
horizontal regions is a task prone to error. Although the dataset should be called
semi-synthetic, due to significant discrepancies between reality and the generated
3D meshes (see Figure 4), we generally call it synthetic in the paper.

5 Experiments

We report qualitative and quantitative results on depth estimation and HVO
segmentation on all four regions from our dataset.

1 Code and dataset available at
https://sites.google.com/site/aerialimageunderstanding/safeuav-learning-to-
estimate-depth-and-safe-landing-areas-for-uavs
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Fig. 4. A sample of RGB vs reconstructed 3D meshes (used for training) from the
same location. Note the significant geometric, texture and illumination inconsistencies
introduced by the reconstruction in contrast to a real-world capture. The darker regions
in the right and left are tree meshes. While these meshes are very difficult to use for
learning something at the ground level, from a birds’s eye viewpoint they look similar
to the real RGB image.

The metrics used for the HVO task are the network Loss (cross entropy),
Accuracy, Precision, Recall and mean intersection over union (mIoU). All the
reported values are computed on the unseen validation set. These metrics can be
defined in terms of true positives, true negatives, false positives and false nega-
tives, as follows: Accuracy = TP+TN

TP+FP+TN+FN
, Precision = TP

TP+FP
, Recall =

TP
TP+FN

and mIoU = TP
TP+FP+FN

.
The cross-entropy used for HVO can be expressed as:

L(y, t) = −
1

N

∑

i,j

∑

c={H,V,O}

t
(c)
i,j ∗ log(y

(c)
i,j )

Each prediction yi,j is a probability vector, that corresponds to a confidence
level for each of the 3 classes, while the target vector is a one-hot encoded vector,
with a value of 1 for the correct class and a value of 0 for the other two.

The metrics used for the depth prediction are the network Loss (Sum of
squared error), the Root Mean Squared Error (RMSE) as well as an absolute
error (in meters). The SSE Loss function can be expressed as:

L(y, t) =
∑

i,j

(yi,j − ti,j)
2

The meters error is the summed error in meters over the entire image, scaled
by the corresponding dataset-dependant scaling factor (F). This can be expressed
mathematically as:

Lmet(y, t) =
1

N

∑

i,j

|yi,j ∗ F − ti,j ∗ F | =
1

N

∑
(|yi,j − ti,j | ∗ F )

The first term is exactly the absolute (L1) loss, while the scaling factor is required
due to the rendering process, which is different for all the considered 3D models.
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ti,j is the ground truth distance and yi,j the predicted distance at the (i, j)
location, while N stands for the number of pixels in the current image.

This factor is a constant number that is different for each region, based on
how the 3D model is defined, but we normalized all the data to the same values
(multiplying the given depth with its factor). This allowed us to train the network
on all the 4 regions using the same scale throughout all the data.

For a fair comparison, we also train the two tasks on two standard archi-
tectures, the U-net [25] and the DeepLabV3+ [6]. In order to keep the same
settings, the input of the network is changed from 240×320 to the default value
for each architecture: 572 × 572 inputs with 388 × 388 outputs for U-net and
512×512 inputs with 512×512 outputs for the DeepLabV3+ model. This makes
some unnormed losses incomparable (such as the Depth L2 loss).

5.1 Qualitative and quantitative evaluation

Table 1. HVO prediction results for SafeUAV-Net-Large and SafeUAV-Net-Small
trained on full dataset.HV Onn is the prediction produced by our network after training
it with the ground truth HV Ogt.

Model Input Accuracy Precision Recall mIoU

U-net [25] RGB 0.729 0.560 0.505 0.356

DeepLabv3+ [6] RGB 0.840 0.753 0.739 0.597

Small RGB 0.823 0.728 0.693 0.551

Large RGB 0.846 0.761 0.748 0.607

Small RGB + Depthnn 0.823 0.728 0.696 0.552

Small RGB + Depthgt 0.902* 0.845* 0.840* 0.732*

Large RGB + Depthnn 0.834 0.741 0.726 0.582

Large RGB + Depthgt 0.909* 0.858* 0.848* 0.748*

The inputs noted with gt (ground truth) represent the automatically extracted la-
bel. Inputs noted with nn (neural network output, iteration 1), represent the labels
extracted by the first network (which in turn was trained with ground truth).
* Since these networks are trained using ground truth labels, and cannot be used for
real-world prediction, they are only presented as an upper bound for each model.

Figure 5 and 6 show RGB imagery and ground truth for both depth and
HVO tasks, and also qualitative results on the HVO task (Figure 5) and depth
estimation (Figure 6) on all four regions from our dataset.

Buildings in suburban regions are significantly sparser than urban regions -
continuous building regions occupy large amounts of the urban landscape. The
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Table 2. Results on depth estimation for SafeUAV-Net-Large and SafeUAV-Net-Small
trained on full dataset. Errors are expressed in meters.

Model Input RMSE Meters

U-net [25] RGB 0.041 9.63

DeepLabv3+ [6] RGB 0.034 8.49

Small RGB 0.031 7.22

Large RGB 0.026 6.09

Small RGB + HV Onn 0.037 8.76

Large RGB + HV Onn 0.027 6.34

As previously stated, the input and output shapes are not identical for all models, so
the Loss iteself should not be compared, but rather the RMSE and meters metrics.
We also observe that using RGB + HVO as input, be it ground-truth or a prediction
of the network gives a much lower improvement, and even hinders the results in some
cases. This comes in contrast to the HVO estimation task, where adding the depth
signal improves the results almost every time.

Table 3. Quantitative results of SafeUAV-Net-Large and SafeUAV-Net-Small for the
HVO task. We report mean values for Accuracy, Precision, Recall and IoU on the
validation sets. The networks in this table were trained using only RGB input. The
second part of the table presents the results, using the best model trained on the entire
network, comparing the impact of fine-tuning on a specific area.

Model Accuracy Precision Recall mIoU

All Small 0.81 ± 0.01 0.72 ± 0.01 0.68 ± 0.01 0.53 ± 0.01

Large 0.83 ± 0.01 0.74 ± 0.01 0.71 ± 0.02 0.57 ± 0.02

base fine-tuned base fine-tuned base fine-tuned base fine-tuned

SubA Small 0.839 0.841 0.730 0.736 0.671 0.673 0.543 0.546

Large 0.855 0.865 0.755 0.779 0.723 0.730 0.590 0.609

SubB Small 0.816 0.819 0.695 0.704 0.598 0.600 0.472 0.475

Large 0.829 0.845 0.707 0.749 0.671 0.672 0.529 0.549

UrbA Small 0.810 0.808 0.716 0.714 0.698 0.696 0.547 0.547

Large 0.844 0.854 0.765 0.784 0.762 0.772 0.618 0.638

UrbB Small 0.833 0.835 0.760 0.761 0.743 0.748 0.599 0.604

Large 0.851 0.860 0.782 0.796 0.779 0.789 0.639 0.656
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Table 4. Quantitative results of SafeUAV-Net-Large and SafeUAV-Net-Small for the
depth estimation task. We report mean values for RMSE as well as absolute error (in
meters) on the validation sets. The networks in this table were also trained only using
RGB input, and the second part of the table presents the results, with and without
fine-tuning the networks.

Model RMSE Meters

All Small 0.045 ± 0.009 10.51 ± 2.24

Large 0.036 ± 0.005 8.29 ± 1.16

base fine-tuned base fine-tuned

SubA Small 0.025 0.023 5.59 5.35

Large 0.022 0.020 4.96 4.67

SubB Small 0.023 0.019 5.51 4.46

Large 0.019 0.017 4.72 4.05

UrbA Small 0.035 0.035 8.39 8.23

Large 0.031 0.031 7.08 7.02

UrbB Small 0.032 0.031 7.47 7.17

Large 0.027 0.026 6.10 5.92

Fig. 5. HVO qualitative results on testing samples from all datasets from SafeNet-UAV-
Large. Red stands for horizontal, yellow for vertical and blue for other areas. From top
to bottom, SuburbanA, UrbanA, UrbanB and SuburbanB, at various altitudes. The
HVO prediction tends to be less noisier and closer to the real ’ground truth’. The
performance hit from the smaller network is difficult to notice.
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evaluation was done by combining all 4 areas into a single dataset. Furthermore,
each urban and suburban area was tested independently, using only the data
from its own region, split into train and validation. We report results for each
task - depth and HVO.

Fig. 6. Depth qualitative results on testing samples from all datasets from SafeNet-
UAV-Large. Depth is normalized between 0 and 1 using the hot colormap (0 means
close, 1 faraway). From top to bottom, SuburbanA, UrbanA, UrbanB and SuburbanB,
at various altitudes. The prediction tends to blur object edges. This is even more visible
in the predictions of the smaller network.

The HVO results (Table 1) show a clear advantage of our SafeUAV-Net-Large
over the state-of-the-art CNN. Furthermore, the numbers for our SafeUAV-Net-
Small are similar to the large one, even though it has much less parameters.
We aimed to further improve safe landing detection using depth labels. Un-
fortunately, except the small improvement for our small network, the results
degraded. We argue this is due to the noise in the depth labeling. To confirm
this, we trained with the ground truth depth, achieving the best results. We
believe improving the ground truth depth labels could also improve safe landing
detection. We provide detailed results for each sub-dataset in Table 3. Train-
ing on all datasets results in a more robust overall detection, as intended when
selecting the interest regions.

The depth results are shown in Table 2. This time, both flavours of our pro-
posed architectures outperform established CNNs. Results for each sub-dataset
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are shown in Table 4. The noisiness of the input is reflected in the higher standard
deviation compared to the safe landing task, noticeable on all regions.

We also show results from RGB drone footage in Figure 7, for both sizes of the
network and tasks (depth and HVO). We notice similar performance compared
to the synthetic dataset. We believe increasing the size of the dataset could
further improve the results.

6 SafeUAV timings

As described in Section 3.1, we develop two versions of SafeUAV-Net - a large one
and a small one. We report timings in Table 5 for both desktop GPUs (NVIDIA
Tesla P100) and embedded devices (NVIDIA Jetson TX2). While maintaining
comparable performance, the small one is suitable for embedded usage.

Table 5. Number of parameters (RGB input, 1-channel depth map output), memory
usage (inference mode, batch of 1) and inference time for multiple batch sizes for
the Safe-UAV networks, compared to the more standard U-net and state-of the art
DeepLabV3+.

Network
Number of
parameters

Memory
usage

Batch size
Tesla P100
(images/s)

Jetson TX2
(images/s)

U-net [25] 31M 1.7GB
1 502 37
5 2311 -
10 3980 -
20 - -

DeepLabv3+ [6] 55M 1.9GB
1 63 -
5 326 -
10 611 -
20 - -

SafeUAV-Net-Large 24M 927MB
1 463 35
5 2333 181
10 4557 428
20 7978 -

SafeUAV-Net-Small 1M 433MB
1 577 138
5 2871 635
10 5774 1045
20 11480 1939

* Dashed values appear because of out of memory errors with the respective boards.

7 Future work

We aim to use the spatial and temporal continuity present in video sequences in
order to generate a more robust prediction. At lower speeds, similar frames could
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Fig. 7. Qualitative results on real UAV footage. RGB, depth predicted with
SafeUAVNet-Small and Large, HVO predicted with SafeUAVNet-Small and Large.
We obtain similar results to the synthetic dataset ones.

be used to vote on the same region in order to get a better precision at landing
time. Additionally, the mesh captured during flight (extracted from RGB used as
a texture for the depth map) could be used to improve the surface classification
of the same location. We also aim to increase the spatial resolution of the ground
truth and efficiently apply the proposed network only on the region of the image
that is significantly different from the previous frame.

Finally, we aim to improve the safety by visual geolocalization - include ad-
ditional common classes easily derived from HVO (such as buildings and tall
structures) and use several discrete geo-localized items to compute an approxi-
mate location, given an initial start position. We believe this will improve safe
area estimation by conditioning on the predicted geo-location. Automatic visual
geolocalization, a task related to recent work [22], could also handle cases of
radio signal loss and improve overall UAV navigation safety and robustness.

8 Conclusions

We propose SafeUAV-Net - an embeddable-hardware compatible system based
on deep convolutional networks, designed for depth and safe landing area es-
timation using only the RGB input. Furthermore, we produce and train on a
synthetic dataset and show compelling performance on real drone footage. Our
extensive experiments on unseen synthetic test cases, where ground truth in-
formation is available, show that our system is numerically accurate, while also
being fast on an embedded GPU running at 35 FPS (SafeUAV-Net-Large) and
138 FPS (SafeUAV-Net-Small). We believe that the use of our approach on com-
mercial drones could improve flight safety in urban or suburban areas at high
speeds and complement the limited range of on-board sensors.
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