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de Liège, Belgium {m.sabatelli, p.geurts}@uliege.be
2 Antwerp Center for Digital Humanities and Literary Criticism (ACDC), Universiteit

Antwerpen, Belgium
3 CLiPS, Computational Linguistics Group, Universiteit Antwerpen, Belgium

{mike.kestemont, walter.daelemans}@uantwerpen.be

Abstract. In this paper we investigate whether Deep Convolutional Neural Net-

works (DCNNs), which have obtained state of the art results on the ImageNet

challenge, are able to perform equally well on three different art classification

problems. In particular, we assess whether it is beneficial to fine tune the net-

works instead of just using them as off the shelf feature extractors for a sepa-

rately trained softmax classifier. Our experiments show how the first approach

yields significantly better results and allows the DCNNs to develop new selective

attention mechanisms over the images, which provide powerful insights about

which pixel regions allow the networks successfully tackle the proposed classi-

fication challenges. Furthermore, we also show how DCNNs, which have been

fine tuned on a large artistic collection, outperform the same architectures which

are pre-trained on the ImageNet dataset only, when it comes to the classification

of heritage objects from a different dataset.
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Learning, Visual Attention

1 Introduction and Related Work

Over the past decade Deep Convolutional Neural Networks (DCNNs) have become

one of the most used and successful algorithms in Computer Vision (CV) [10] [18]

[30]. Due to their ability to automatically learn representative features by incrementally

down sampling the input via a set of non linear transformations, these kind of Artifi-

cial Neural Networks (ANNs) have rapidly established themselves as the state of the

art algorithm on a large set of CV problems. Within different CV testbeds large atten-

tion has been paid to the ImageNet challenge [9], a CV benchmark that aims to test

the performances of different image classifiers on a dataset that contains one million

natural images distributed over thousand different classes. The availability of such a

large dataset, combined with the possibility of training ANNs in parallel over several

GPUs [17], has lead to the development of a large set of different neural architectures

that have continued to outperform each other over the years [25] [27] [7] [13] [14].

A promising research field in which the classification performances of such DCNNs

can be exploited is that of Digital Heritage [22]. Due to a growing and rapid process

of digitization, museums have started to digitize large parts of their cultural heritage
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collections, leading to the creation of several digital open datasets [3] [20]. The im-

ages constituting these datasets are mostly matched with descriptive metadata which,

as presented in e.g. [20], can be used to define a set of challenging machine learning

tasks. However, the number of samples in these datasets is far smaller than those in, for

instance, the ImageNet challenge and this can become a serious constraint when trying

to successfully train DCNNs from scratch.

The lack of available training data is a well known issue in the Deep Learning com-

munity and is one of the main reasons that has led to the development of the research

field of Transfer Learning (TL). The main idea of TL consists of training a machine

learning algorithm on a new task (e.g. a classification problem) while exploiting knowl-

edge that the algorithm has already learned on a previously related task (a different

classification problem). This machine learning paradigm has proved to be extremely

successful in Deep Learning, where it has been shown how DCNNs that were trained

on many large datasets [15] [26], were able to achieve very promising results on classi-

fication problems from heterogeneous domains, ranging from medical imaging [28] or

gender recognition [32] over plant classification [24] to galaxy detection [2].

In this work we explore whether the TL paradigm can be successfully applied to

three different art classification problems. We use four neural architectures that have

obtained strong results on the ImageNet challenge in recent years and we investigate

their performances when it comes to attributing the authorship to different artworks,

recognizing the material which has been used by the artists in their creations, and iden-

tifying the artistic category these artworks fall into. We do so by comparing two pos-

sible approaches that can be used to tackle the different classification tasks. The first

one, known as off the shelf classification [23], simply retrieves the features that were

learned by the DCNNs on other datasets and uses them as input for a new classifier. In

this scenario the weights of the DCNN do not change during the training phase, and

the final, top-layer classifier is the only component of the architecture which is actually

trained. This changes in our second explored approach, known as fine tuning, where the

weights of the original DCNNs are “unfrozen” and the neural architectures are trained

together with the final classifier.

Recent work [16] has shown the benefits that this particular pre-training approach

has. In particular, DCNNs which have been trained on the ImageNet challenge typically

lead to superior results when compared to the same architectures trained from scratch.

However, this is not necessarily beneficial and in some cases DCNNs that are randomly

initialized are able to achieve the same performances as ImageNet pre-trained models.

However, none of the results presented in [16] have been applied to datasets containing

heritage objects, it is thus still an open question how such pre-trained DCNNs would

perform in such a classification scenario. Below, we extensively study the performance

of these DCNNs; at the same time we assess whether better TL performances can be

obtained when using DCNNs that, in addition to the ImageNet dataset, have additionally

been pre-trained on a large artistic collection.

Contributions and Outline: This work contributes to the field of (Deep) TL ap-

plied to art classification problems. It does so by investigating if DCNNs, which have

been originally trained on problems that are very dissimilar and far from art classifica-

tion, can still perform well in such a different domain. Moreover, assuming this is the
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case, we explore if it is possible to improve on such performances. The paper is struc-

tured as follows: in Section 2 we present a theoretical introduction to the field of TL, a

description of the datasets that we have used and the methodological details about the

experiments that we have performed. In Section 3 we present and discuss our results. A

summary of the main contributions of this work together with some ideas for possible

future research is finally presented in Section 4.

2 Methods

We now present the methods that underpin our research. We start by giving a brief for-

mal definition of TL. We then introduce the three classification tasks under scrutiny,

together with a brief description of the datasets. Finally, we present the neural architec-

tures that we have used for our experiments.

2.1 Transfer Learning

A supervised learning (SL) problem can be identified by three elements: an input space

Xt , an output space Yt , and a probability distribution pt(x,y) defined over Xt ×Yt (where

t stands for ’target’, as this is the main problem we would like to solve). The goal of SL

is then to build a function f : Xt → Yt that minimizes the expectation over pt(x,y) of a

given loss function ℓ assessing the predictions made by f :

E(x,y)∼pt (x,y){ℓ(y, f (x))}, (1)

when the only information available to build this function is a learning sample of input-

output pairs LSt = {(xi,yi)|i = 1, . . . ,Nt} drawn independently from pt(x,y). In the gen-

eral transfer learning setting, one assumes that an additional dataset LSs, called the

source data, is available that corresponds to a different, but related, SL problem. More

formally, the source SL problem is assumed to be defined through a triplet (Xs,Ys, ps(x,y)),
where at least either Xs 6= Xt , Ys 6= Yt , or ps 6= pt . The goal of TL is then to exploit the

source data LSs together with the target data LSt to potentially find a better model f

in terms of the expected loss (1) than when only LSt is used for training this model.

Transfer learning is especially useful when there is a lot of source data, whereas target

data is more scarce.

Depending on the availability of labels in the target and source data and on how

the source and target problems differ, one can distinguish different TL settings [21]. In

what follows, we assume that labels are available in both the source and target data and

that the input spaces Xt and Xs, that both correspond to color images, match. Output

spaces and joint distributions will however differ between the source and target prob-

lems, as they will typically correspond to different classification problems (ImageNet

object recognition versus art classification tasks). Our problem is thus an instance of in-

ductive transfer learning [21]. While several inductive transfer learning algorithms ex-

ist, we focus here on model transfer techniques, where information between the source

and target problems is exchanged in the form of a DCNN model pre-trained on the

source data. Although potentially suboptimal, this approach has the advantage of being

more computationally efficient, as it does not require to train a model using both the

source and the target data.
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2.2 Datasets and Classification Challenges

For our experiments we use two datasets which come from two different heritage col-

lections. The first one contains the largest number of samples and comes from the Ri-

jksmuseum in Amsterdam4. On the other hand, our second ‘Antwerp’ dataset is much

smaller. This dataset presents a random sample that is available as open data from a

larger heritage repository: DAMS (Digital Asset Management System)5. This reposi-

tory can be searched manually via the web-interface or queried via a Linked Open Data

API. It aggregates the digital collections of the foremost GLAM institutions (Galleries,

Libraries, Archives, Museums) in the city of Antwerp in Belgium. Thus, this dataset

presents a varied and representative sample of the sort of heritage data that is nowa-

days being collected at the level of individual cities across the globe. While it is much

smaller, its coverage of cultural production is similar to that of the Rijksmuseum dataset

and presents an ideal testing ground for the transfer learning task under scrutiny here.

Both image datasets come with metadata encoded in the Dublin Core metadata stan-

dard [31]. We selected three well-understood classification challenges: (1) “material

classification” which consists in identifying the material the different heritage objects

are made of (e.g paper, gold, porcelain, ...) ; (2) “type classification” in which the DC-

NNs have to classify in which artistic category the samples fall into (e.g. print, sculpture,

drawing, ...), and finally (3) “artist classification”, where the main goal is to appropri-

ately match each sample of the dataset with its creator (from now on we refer to these

classification tasks as challenge 1, 2 and 3 respectively). As reported in Table 1 we can

see how the Rijksmuseum collection is the dataset with the largest amount of samples

per challenge (Nt ) and the highest amount of labels to classify (Qt ). Furthermore it is

also worth noting that there was no metadata available when it comes to the first classi-

fication challenge for the Antwerp dataset (as marked by the × symbol), and how there

are some common labels between the two heritage collections when it comes to chal-

lenge 2. A visualization reporting some of the images present in both datasets can be

seen in Figure 1.

We use 80% of the datasets for training while the remaining 2 x 10% is used for

validation and testing respectively. Furthermore, we ensure that only classes which oc-

cur at least once in all the splits are used for our experiments. Naturally, in order to

keep all comparisons fair between neural architectures and different TL approaches, all

experiments have been performed on the exact same data splits which, together with the

code used for all our experiments, are publicly released to the CV community 6.

2.3 Neural Architectures and Classification Approaches

For our experiments we use four pre-trained DCNNs that have all obtained state of

the art results on the ImageNet classification challenge. The neural architectures are

VGG19 [25], Inception-V3 [27], Xception [7] and ResNet50 [34]. We use the imple-

mentations of the networks that are provided in the Keras Deep Learning library [8]

4 https://staff.fnwi.uva.nl/t.e.j.mensink/uva12/rijks/
5 https://dams.antwerpen.be/
6 https://github.com/paintception/Deep-Transfer-Learning-for-Art-Classification-Problems
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Table 1: An overview of the two datasets that are used in our experiments. Each color

of the table corresponds to a different classification challenge, starting from challenge

1 which is represented in yellow, challenge 2 in blue and finally challenge 3 in red.

Furthermore we represent with Nt the amount of samples constituting the datasets and

with Qt the number of labels. Lastly, we also report if there are common labels between

the two heritage collections.
Challenge Dataset Nt Qt % of overlap

Material Rijksmuseum 110,668 206 None

Antwerp × ×

Type Rijksmuseum 112,012 1,054

Antwerp 23,797 920 ≈ 15%

Artist Rijksmuseum 82,018 1,196 None

Antwerp 18,656 903

together with their appropriate Tensorflow weights [1] that come from the Keras of-

ficial repository as well. Since all architectures have been built in order to deal with the

ImageNet dataset we replace the final classification layer of each network with a new

one. This final layer simply consists of a new softmax output, with as many neurons

as there are classes, which follows a 2D global average pooling operation. We rely on

this dimensionality reduction step because we do not add any fully connected layers

between the last convolution block and the softmax output. Hence, in this way we are

able to obtain a feature vector, X, out of the rectified activation feature maps of the net-

work that can be properly classified. Since all experiments are treated as a multi-class

classification problem we use the categorical crossentropy function as the loss function

of the DCNNs.

We investigate two possible classification approaches that are based on the previ-

ously mentioned pre-trained architectures. The first one, denoted as off the shelf classi-

fication, only trains a final softmax classifier on X, which is retrieved from the different

DCNNs after performing one forward pass of the image through the network 7. This

approach is intended to explore whether the features that are learned by the DCNNs

on the ImageNet challenge are informative enough in order to properly train a ma-

chine learning classifier on the previously introduced art classification challenges. If

this would be the case, such pre-trained models could be used as appropriate feature ex-

tractors without having to rely on expensive GPU computations for training. Naturally,

they would only require the training of the final classifier without having to compute

any backpropagation operations over the entire network.

7 Please note how instead of a softmax layer any kind of machine learning classifier can be used

instead. We experimented with both Support Vector Machines (SVMs) and Random Forests

but since the results did not significantly differ between classifiers we decided to not include

them here.



6 M. Sabatelli et al.

Fig. 1: A visualization of the images that are used for our experiments. It is possible

to see how the samples range from images representing plates made of porcelain to

violins, and from Japanese artworks to a more simple picture of a key.

Our second approach is generally known as fine tuning and differs from the previous

one by the fact that together with the final softmax output the entire DCNN is trained as

well. This means that unlike the off the shelf approach, the entirety of the neural archi-

tecture gets “unfrozen” and is optimized during training. The potential benefit of this

approach lies in the fact that the DCNNs are independently trained on samples coming

from the artistic datasets, and thus their classification predictions are not restricted by

what they have previously learned on the ImageNet dataset only. Evidently, such an

approach is computationally more demanding.

In order to maximize the performances of the DCNNs we take the work presented in

[19] into consideration and train them with a relatively small batch size of 32 samples.

We do not perform any data augmentation operations besides a standard pixel normal-

ization to the [0,1] range and a re-scaling operation which resizes the images to the

input size that is required by the different DCNNs. Regarding the stochastic optimiza-

tion procedures of the different classifiers, we use two different optimizers, that after

preliminary experiments, turned out to be the best performing ones. For the off the shelf

approach we use the RMSprop optimizer [29] which has been initialized with its default

hyperparameters (learning rate = 0.001, a momentum value ρ = 0.9 and ε = 1e− 08).

On the other hand, when we fine tune the DCNNs we use the standard (and less greedy)

Stochastic Gradient Descent (SGD) algorithm with the same learning rate, 0.001, and a

Nesterov Momentum value set to 0.9. Training has been controlled by the Early Stopping

method [6] which interrupted training as soon as the validation loss did not decrease for

7 epochs in a row. The model which is then used on the testing set is the one which

obtained the smallest validation loss while training.
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To the best of our knowledge, so far no work has been done in systematically as-

sessing to which extent DCNNs pre-trained on the ImageNet dataset could also be used

as valuable architectures when tackling art classification problems. Furthermore, it is

also not known whether the fine tuning approach would yield better results when com-

pared to the off the shelf one and if using such pre-trained ANNs would yield better

performances than training the same architectures from scratch as observed by [16]. In

the coming section we present new results that aim to answer these research questions.

3 Results

Our experimental results are divided in two different sections, depending on which kind

of dataset has been used. We first report the results that we have obtained when using ar-

chitectures that were pre-trained on the ImageNet dataset only, and aimed to tackle the

three classification problems of the Rijksmuseum dataset that were presented in Section

2.2. We report these results in Section 3.1 in which we explore the benefits of using the

ImageNet dataset as the TL source data, and how well such pre-trained DCNNs gen-

eralize when it comes to artistic images. We then present the results from classifying

the Antwerp dataset, using DCNNs that are both pre-trained on the ImageNet dataset

and on the Rijksmuseum collection in Section 3.3. We investigate whether these neu-

ral architectures, which have already been trained to tackle art classification problems

before, perform better than the ones which have been trained on the ImageNet dataset

only.

All results show comparisons between the off the shelf classification approach and

the fine tuning scenario. In addition to that, in order to establish the potential benefits

that TL from ImageNet has over training a DCNN from scratch, we also report the

results that have been obtained when training one DCNN with weights that have been

initially sampled from a “He-Uniform” distribution [12]. Since we take advantage of

work [4] we use the Inception-V3 architecture. We refer to it in all figures as Scratch-

V3 and visualize it with a solid orange line. Figures 2 and 3 report the performances

in terms of accuracies that the DCNNs have obtained on the validation sets. While the

performances that the neural architectures have obtained on the final testing set are

reported in Tables 2 and 3.

3.1 From Natural to Art Images

The first results that we report have been obtained on the “material” classification chal-

lenge. We believe that this can be considered as the easiest classification task within the

ones that we have introduced in Section 2.2 for two main reasons. First, the number of

possible classes the ANNs have to deal with is more than five times smaller when com-

pared to the other two challenges. Furthermore, we also believe that this classification

task is, within the limits, the most similar one when compared to the original ImageNet

challenge. Hence, the features that might be useful in order to classify the different

natural images on the latter classification testbed might be not too dissimilar from the

ones that are needed to properly recognize the material that the different samples of

the Rijksmuseum collection are made of. If this would be the case we would expect
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very close performances between the off the shelf classification approach and the fine

tuning one. Comparing the learning curves of the two classification strategies in Figure

2, we actually observe that the fine tuning approach leads to significant improvements

when compared to the off the shelf one, for three architectures out of the four tested

ones. Note however that, in support of our hypothesis, the off the shelf approach can

still reach high accuracy values on this problem and is also competitive with the DCNN

trained from scratch. This suggests that features extracted from networks pretrained on

ImageNet are relevant for material classification.
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Fig. 2: Comparison between the fine tuning approach versus the off the shelf one when

classifying the material of the heritage objects of the Rijksmuseum dataset. We observe

how the first approach (as reported by the the dashed lines) leads to significant improve-

ments when compared to the latter one (reported by the dash-dotted lines) for three out

of four neural architectures. Furthermore, we can also observe how training a DCNN

from scratch leads to worse results when compared to fine-tuned architectures which

have been pre-trained on ImageNet (solid orange line).

The ResNet50 architecture is the DCNN which, when fine tuned, performs overall

best when compared to the other three ANNs. This happens despite it being the DCNN

that initially performed worse as a simple feature extractor in the off the shelf experi-

ments. As reported in Table 2 we can see how this kind of behavior reflects itself on the

separated testing set as well, where it obtained the highest testing set accuracy when fine

tuned (92.95%), and the lowest one when the off the shelf approach was used (86.81%).

It is worth noting how the performance between the different neural architectures do not

strongly differ between each other once they are fine tuned, with all DCNNs perform-

ing around ≈ 92% on the final testing set. Furthermore, special attention needs to be

given to the VGG19 architecture, which does not seem to benefit from the fine tuning

approach as much as the other architectures do. In fact, its off the shelf performance on

the testing set (92.12%) is very similar to its fine tuned one (92.23%). This suggests that

this neural architecture is actually the only one which, in this task, and when pre-trained

on ImageNet, can successfully be used as a simple feature extractor without having to

rely on complete retraining.



Deep Transfer Learning for Art Classification Problems 9

When analyzing the performances of the different neural architectures on the “type”

and “artist” classification challenges (respectively the left and right plots reported in

Figure 3), we observe how the fine tuning strategy leads to even more significant im-

provements when compared to what has been observed in the previous experiment. The

results obtained on the second challenge show again how the ResNet50 architecture is

the DCNN which leads to the worse results if the off the shelf approach is used (its

testing set accuracy is as low as 71.23%) and similarly to what has been observed be-

fore, it then becomes the best performing ANN when fine tuned, with a final accuracy

of 91.30%. Differently from what has been observed in the previous experiment, the

VGG19 architecture, despite being the ANN performing best when used as off the shelf

feature extractor, this time performs significantly worse than when it is fine tuned, which

highlights the benefits of this latter approach. Similarly to what has been observed be-

fore, our results are again not significantly in favor of any neural architecture once they

are fine tuned, with all final accuracies being around ≈ 91%.

If the classification challenges that we have analyzed so far have highlighted the

significant benefits of the fine tuning approach over the off the shelf one, it is also im-

portant to note that the latter approach is still able to lead to satisfying results. In fact,

accuracies of 92.12% have been obtained when using the VGG19 architecture on the

first challenge and a classification rate of 77.33% was reached by the same architecture

on the second challenge. Despite the latter accuracy being very far in terms of perfor-

mance from the one obtained when fine tuning the network (90.27%), it still shows how

DCNNs pre-trained on ImageNet do learn particular features that can also be used for

classifying the “material” and the “type” of heritage objects. However, when analyz-

ing the results from the “artist” challenge, we can see that this is partially not the case

anymore.

For the third classification challenge, the Xception, ResNet50, and Inception-V3

architectures all perform extremely poorly if not fine tuned, with the latter two DC-

NNs not being able to even reach a 10% classification rate. Better results are obtained

when using the VGG19 architecture, which reaches a final accuracy of 38.11%. Most

importantly, all performances are again significantly improved when the networks are

fine tuned. As already observed in the previous experiments, ResNet50 outperforms the

others on the validation set. However, on the test set (see Table 2), the overall best per-

forming network is Inception-V3 (with a final accuracy of 51.73%), which suggests that

ResNet50 suffered from overfitting. It is important to state two major important points

about this set of experiments. The first one relates to the final classification accuracies

which have been obtained, and that at first sight might seem disappointing. It is true that

these classification rates are significantly lower when compared to the ones obtained in

the previous two experiments. However, it is important to highlight how a large set of

artists present in the dataset are associated to an extremely limited amount of samples.

This reflects a lack of appropriate training data which does not allow the DCNNs to

learn all the features that are necessary to successfully deal with this particular clas-

sification challenge. In order to do so, we believe that more training data is required.

Moreover, it is worth pointing out how despite performing very poorly when used as off

the shelf feature extractors, ImageNet pre-trained models do still perform better once

they are fine tuned than the DCNN which is trained from scratch. This suggests that
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Fig. 3: A similar analysis as the one which has been reported in Figure 2 but for the sec-

ond and third classification challenges (left and right figures respectively). The results

show again the significant benefits that fine tuning (reported by the dashed line plots)

has when compared to the off the shelf approach (reported by the dash-dotted lines) and

how this latter strategy miserably under-performs when it comes to artist classification.

Furthermore we again see the benefits that using a pre-trained DCNN has over training

the architecture from scratch (solid orange line).

these networks do learn potentially representative features when it comes to challenge

3, but in order to properly exploit them, the DCNNs need to be fine tuned.

3.2 Discussion

In the previous section, we have investigated whether four different DCNNs pre-trained

on the ImageNet dataset can be successfully used to address three art classification

problems. We have observed how this is particularly the case when it comes to classi-

fying the material and types, where in fact, the off the shelf approach can already lead

to satisfactory results. However, most importantly, we have also shown how these per-

formances are always significantly improved if the DCNNs are fine tuned and how an

ImageNet initialization is beneficial over training the networks from scratch. Further-

more, we have discovered how the pre-trained DCNNs fail if used as simple feature

extractors when having to attribute the authorship to the different heritage objects. In

the next section, we want now to explore if the fine tuned DCCNs can lead to better

performances, when tackling two of the already seen classification challenges on a dif-

ferent heritage collection. For this problem, we will again compare the off the shelf

approach with the fine tuning one.

3.3 From One Art Collection to Another

Table 3 compares the results that have been obtained on the Antwerp dataset when using

ImageNet pre-trained DCNNs (which are identified by θ) versus the same architectures

fine tuned on the Rijksmuseum dataset (θ̂). Similarly to the results presented in the
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Table 2: An overview of the results obtained by the different DCNNs on the testing set

when classifying the heritage objects of the Rijksmuseum. Bold results report the best

performing architectures overall. The additional columns “Params” and “X” report the

amount of parameters the ANNs have to learn and the size of the feature vector which

is used as input for the softmax classifier.

Challenge DCNN off the shelf fine tuning Params X

1 Xception 87.69% 92.13% 21K 2048

1 InceptionV3 88.24% 92.10% 22K 2048

1 ResNet50 86.81% 92.95% 24K 2048

1 VGG19 92.12% 92.23% 20K 512

2 Xception 74.80% 90.67% 23K 2048

2 InceptionV3 72.96% 91.03% 24K 2048

2 ResNet50 71.23% 91.30% 25K 2048

2 VGG19 77.33% 90.27% 20K 512

3 Xception 10.92% 51.43% 23K 2048

3 InceptionV3 .07% 51.73% 24K 2048

3 ResNet50 .08% 46.13% 26K 2048

3 VGG19 38.11% 44.98% 20K 512

previous section the first blue block of the table refers to the “type” classification task,

while the red one reports the results obtained on the “artist” classification challenge.

While looking at the performances of the different neural architectures two inter-

esting results can be highlighted. First, DCNNs which have been fine tuned on the

Rijksmuseum dataset outperform the ones pre-trained on ImageNet in both classifica-

tion challenges. This happens to be the case both when the DCNNs are used as simple

feature extractors and when they are fine tuned. On the “type” classification challenge,

this result is not surprising since, as discussed in Section 2.2, the types corresponding

to the heritage objects of the two collections partially overlap. This is more suprising on

the “artist” classification challenge however, since there is no overlap at all between the

artists of the Rijksmuseum and the ones from the Antwerp dataset. A second interesting

result, which is consistent with the results in the previous section, is the observation that

it is always beneficial to fine tune the DCNNs over just using them as off the shelf fea-

ture extractors. Once the ANNs get fine tuned on the Antwerp dataset, these DCNNs,

which have also been fine tuned on the Rijksmuseum dataset, outperform the architec-

tures which have been pre-trained on ImageNet only. This happened to be the case for

both classification challenges and for all considered architectures, as reported in Table

3. This demonstrates how beneficial it is for DCNNs to have been trained on a similar

source task and how this can lead to significant improvements both when the networks

are used as feature extractors and when they are fine tuned.
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Table 3: The results obtained on the classification experiments performed on the

Antwerp dataset with DCNNs which have been initially pre-trained on ImageNet (θ)

and the same architectures which have been fine tuned on the Rijksmuseum dataset (θ̂).

Our results show how the latter pre-trained DCNNs yield better results both if used as

off the shelf feature extractors and if fine tuned.

Challenge DCNN θ + off the shelf θ̂ + off the shelf θ + fine tuning θ̂ + fine tuning

2 Xception 42.01% 62.92% 69.74% 72.03%

2 InceptionV3 43.90% 57.65% 70.58% 71.88%

2 ResNet50 41.59% 64.95% 76.50% 78.15%

2 VGG19 38.36% 60.10% 70.37% 71.21%

3 Xception 48.52% 54.81% 58.15% 58.47%

3 InceptionV3 21.29% 53.41% 56.68% 57.84%

3 ResNet50 22.39% 31.38% 62.57% 69.01%

3 VGG19 49.90% 53.52% 54.90% 60.01%

3.4 Selective Attention

The benefits of the fine tuning approach over the off the shelf one are clear from our

previous experiments. Nevertheless, we do not have any insights yet as to what exactly

allows fine tuned DCNNs to outperform the architectures which are pre-trained on Im-

ageNet only. In order to provide an answer to that, we investigate which pixels of each

input image contribute the most to the final classification predictions of the DCNNs.

We do this by using the “VisualBackProp” algorithm presented by [5], which is able to

identify which feature maps of the DCNNs are the most informative ones with respect

to the final predictions of the network. Once these feature maps are identified, they get

backpropagated to the original input image, and visualized as a saliency map according

to their weights. The higher the activation of the filters, the brighter the set of pixels

covered by these filters are represented.

The results that we have obtained provide interesting insights about how fine tuned

DCNNs develop novel selective attention mechanisms over the images, which are very

different from the ones that characterize the networks that are pre-trained on ImageNet.

We report the existence of these mechanisms in Figure 4 where we visualize the dif-

ferent saliency maps between a DCNN pre-trained on ImageNet and the same neural

architecture which has been fine tuned on the Rijksmuseum collection (specifically re-

named RijksNet 8). On the left side of Figure 4 we visualize which sets of pixels allow

the fine tuned DCNN to successfully classify an artist of the Rijksmuseum collection

that the same architecture was not able to initially recognize. It is possible to notice how

the saliency maps of the latter architecture either correspond to what is more similar to

a natural image, as present in the ImageNet dataset (e.g. the buildings of the first and

8 To show these results we have used the VGG19 architecture since it provided a better in-

tegration with the publicly available source code of the algorithm which can be found at

https://github.com/raghakot/keras-vis
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third images), or even to non informative pixels at all, as shown by the second image.

However, the fine tuned DCNN shows how these saliency maps change towards the set

of pixels that correspond to the portions of the images representing people in the bot-

tom, suggesting that this is what allows the DCNN to appropriately recognize the artist.

Similarly, on the right side of the figure we report which parts of the original image

are the most useful ones when it comes to classify the type of the reported heritage

object, which in this case corresponds to a glass wall of a church. We can see how the

pre-trained architecture only identifies as representative pixels the right area above the

arch, which turned out to be not informative enough for properly classifying this sample

of the Rijksmuseum dataset. However, once the DCNN gets fine tuned we clearly see

how in addition to the previously highlighted area a new saliency map occurs on the

image, corresponding to the text description below the represented scene. It turns out

that the presence of text is a common element below the images that represent cleri-

cal glass windows and as a consequence it is recognized by the fine tuned DCNN as a

representative feature.

Fig. 4: A visualization that shows the differences between which sets of pixels in an

image are considered informative for a DCNN which is only pre-trained on ImageNet,

compared to the same architecture which has also been fine tuned on the Rijksmuseum

collection. It is clear how the latter neural network develops novel selective attention

mechanisms over the original image.

These observations can be related to parallel insights in authorship attribution re-

search [11], an established task from Natural Language Processing that is highly sim-

ilar in nature to artist recognition. In this field, preference is typically given to high-

frequency function words (articles, prepositions, particles etc.) over content words (nouns,

adjectives, verbs, etc.), because the former are generally considered to be less strongly

related to the specific content or topic of a work. As such, function words or stop words

lend themselves more easily to attribution across different topics and genres. In art his-

tory, strikingly similar views have been expressed by the well-known scholar Giovanni

Morelli (1816-1891), who published seminal studies in the field of artist recognition

[33]. In Morelli’s view too, the attribution of a painting could not happen on the basis of
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the specific content or composition of a painting, because these items were too strongly

influenced by the topic of a painting or the wishes of a patron. Instead, Morelli proposed

to base attributions to so-called Grundformen or small, seemingly insignificant details

that occur frequently in all paintings and typically show clear traces of an artist’s indi-

vidual style, such as ears, hands or feat, a painting’s function words, so to speak. The

saliency maps above reveal a similar shift in attention when the ImageNet weights are

adapted on the Rijksmuseum data: instead of focusing on higher-level content features,

the network shifts its attention to lower layers in the network, seemingly focusing on

insignificant details, that nevertheless appear crucial to perform artist attribution.

4 Conclusion

This paper provides insights about the potential that the field of TL has for art clas-

sification. We have investigated the behavior of DCNNs which have been originally

pre-trained on a very different classification task and shown how their performances

can be improved when these networks are fine tuned. Moreover, we have observed how

such neural architectures perform better than if they are trained from scratch and de-

velop new saliency maps that can provide insights about what makes these DCNNs

outperform the ones that are pre-trained on the ImageNet dataset. Such saliency maps

reflect themselves in the development of new features, which can then be successfully

used by the DCNNs when classifying heritage objects that come from different heritage

collections. It turns out that the fine tuned models are a better alternative to the same

kind of architectures which are pre-trained on ImageNet only, and can serve the CV

community which will deal with similar machine learning problems.

As future work, we aim to investigate whether the results that we have obtained

on the Antwerp dataset will also apply to a larger set of smaller heritage collections.

Furthermore, we want to explore the performances of densely connected layers [14]

and understand which layers of the currently analyzed networks contribute the most to

their final classification performances. This might allow us to combine the best parts of

each neural architecture into one single novel DCNN which will be able to tackle all

three classification tasks at the same time.
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