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Abstract. The purpose of this work is to explore self-supervised learn-
ing (SSL) strategy to capture a better feature with spatiotemporal 3D
convolution. Although one of the next frontier in video recognition must
be spatiotemporal 3D CNN, the convergence of the 3D convolutions is
really difficult because of their enormous parameters or missing tempo-
ral(motion) feature. One of the effective solutions is to collect a 105-order
video database such as Kinetics/Moments in Time. However, this is not
an efficient with burden of manual annotations. In the paper, we train
3D CNN on wrong video-sequence detection tasks in a self-supervised
manner (without any manual annotation). The shuffling and verifica-
tion of consecutive video-frame-order is effective for 3D CNN to cap-
ture temporal feature and get a good start point of parameters to be
fine-tuned. In the experimental section, we verify that our pretrained
3D CNN on wrong clip detection improves the level of performance on
UCF101 (+3.99% better than baseline, namely training 3D convolution
from scratch).

Keywords: 3D Convolutional Neural Network, Self-superviesed Learn-
ing, Motion Feature, Human Action Recognition.

1 Introduction

Spatiotemporal 3D Convolutional Neural Network (3DCNN) have been success-
ful in video understanding and it is expected to further develop [4]. Recent
researches [1, 4] have shown that 3DCNN have beat 2DCNN [11], which are
conventional state-of-the-art methods in video recognition task. Against to the
difficulty of 3D conv optimization, there are mainly two factors as follows: (i)
Carreira et al. proposed a parameter inflation [1] which is a method for knowledge
transfer from 2D pretrained model into 3D initialized parameters, (ii) large-scale
(over 105-order) and clearly annotated video datasets have been released [6, 10].

However, while inflation makes appearance feature easier to capture for 3DCNN,
the suspicion that 3DCNN does not capture the motion (temporal) feature ef-
fectively. In the recent study, Huang et al. pointed out that the 3DCNN with
consecutive frames only selects effective frame(s) to contribute the video classi-
fication [5].
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On one hand, Two-Stream 3DCNN, which is ensemble method of RGB- and
flow-input achieved significantly better performance than single RGB-input in
action recognition [1] (Two-stream 98.0 vs. RGB-stream 95.6 on UCF101). This
result indicates that a 3DCNN with consecutive RGB frames cannot completely
capture a motion feature like optical flows. We believe that acquiring motion
feature like optical flows with 3DCNN from only RGB-input is the key to further
progress of 3DCNN in action recognition.

Also, manual annotations are time-consuming. To effectively optimize 3DCNN,
we require over 105-order video database such as Kinetics. The burden of human
labeling has contributed to the advanced video recognition model, however, any
further annotations are obstacles of training of video understanding. Namely,
we must consider an effective learning method for 3D convolution without any
human supervisions.

In this study, we focus on self-supervised learning (SSL) with video order to
optimize 3D convolution without any manual annotations on pretrained 3DCNN.
We here propose the shuffling and detecting of wrong video order to learn a 3D
convolution. The video order is a high-confidence context to enoughly train 3D
convolutional filters. According to the experimental results, we confirm that eas-
ily solvable SSL tasks can improve an optimization of 3DCNN. The performance
rate with 3DCNN on UCF101 is improved with our self-supervision. Our self-
supervision is +3.99% better than a baseline, training 3DCNN from scratch.

2 Related works

2.1 CNN based action recognition on videos

One of the most popular approach to action recognition is Two-Stream 2DCNN [11].
This is the ensemble of spatial-stream which takes RGB frame as input and
temporal-stream which takes stacked optical flow frames as input. Spatial-stream
can get the benefits from ImageNet pretraining which captures strong appear-
ance feature, while temporal-stream captures motion feature by hand-craft op-
tical flow and temporal stacked input. Also, the variants of this model were
proposed.

One of the recent trends of action recognition is the use of 3D convolution to
capture spatio-temporal feature. Tran et al. trained (relatively shallow) 3DCNN
on Sports 1M dataset to extract spatio-temporal feature from videos [12]. How-
ever in several years ago, unlike 2DCNN which has several large-scale image
datasets, optimization of deeper architecture of 3DCNN was difficult due to the
luck of the dataset including sufficient video instances. In recent study, several
huge datasets [6, 10] were released. In addition, Inflation [1], which is the method
to transfer appearance knowledge from pretrained 2DCNN by expanding 2D ker-
nels into 3D was proposed. Under favor of these factors, as deep 3D architectures
as 2D became able to provide powerful performances.

On the other hand, Huang et al. provided interesting discussion that 3DCNN
does not necessarily capture temporal information well in action recognition [5].
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From the results of their experiments, it can be considered that 3DCNN focuses
on key frame selection from set of images rather than motion information from
video clip, namely relationship between frames. Moreover, Two-Stream 3DCNN,
which is ensemble method of RGB input and optical flow input achieved signif-
icantly better performance than only RGB input [1]. This result indicates that
from consecutive RGB frames 3DCNN can not capture complete motion which
contributes to classify actions.

Based on these insights, we believe that motion information can be still
disputable to explore in contrast to appearance one and contribute to further
progress of 3DCNN. In this research, we provide experiments about influence
of pretraining procedures which encourage 3DCNN to consider relationship be-
tween frames.

2.2 Self-supervised representation learning

The main goal of self-supervised learning (SSL) is to transfer a model trained
on a pretext task which is defined without manual annotation to a target task.
Because of no cost of annotation and fine-tuning which is compatible transfer
strategy, self-supervised learning is one of the focuses of attention in computer
vision. Many of pretext tasks are defined using image data. For instance, col-
orization, inpainting, solving puzzles and counting. Another direction is the use
of video-sequence. Misra et al. trained SiameseNet to verify the order of video
frames [9] and Lee et al. trained to sort frames in correct order [8]. While their
approaches focus on capturing appearance feature from single frame as a result
of video-sequence based pretext task, in order to capture motion feature Fer-
nando et al. trained a model to verify video-order taking multiple subtraction
images of consecutive frames as input [2]. While they used 2DCNN, currently it
is said that 3DCNN is more suitable for capturing spatio-temporal feature [5].
In this research, we focus on exploring the potential of SSL using video-sequence
towards motion feature on 3DCNN.

3 SSL for 3D CNN

In order to explore self-supervised learning strategy towards motion feature,
we first trained a 3DCNN model on pretext task and fine-tune it on action
recognition task without freezing any weights of layers. This means that in this
experiments we assume capturing efficient representation provides good start
point of optimization.

3.1 Pretext tasks

According to previous works [9, 8, 2], we define classification task based on Siame-
seNet which is consist of several branch networks with shared weights and one
fusion network (see Figure 1). In this research, each branch network takes a dif-
ferent clip from wrong one (Xw) and several correct ones ({Xi

c}
N−1

i=1
) as input and
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Fig. 1. Overview of pretraining stratedy : Each branch network (3DCNN) takes
a clip from a set of wrong one and several correct ones as input and their outputs are
concatenated as input of fusion network. Here, N represents total number of input clips
as well as branch network. And then, fusion network outputs estimated wrong position
p̂w In each question we permutate branch positions where each clip is input. Once we
define the scheme of making a wrong clip, all of this task can be designed without any
manual annotation.

their outputs are concatenated as input of fusion network. Here, N represents
total number of input clips as well as branch network. To establish problem,
in each question we permutate branch positions where each clip is input, and
obtain the position of a wrong clip pw ∈ {1, ..., N}. And then, fusion network
predicts pw, as N -way classification problem. Note that while a wrong clip is
modified in some way on temporal order (discussed below), a correct one is not
modified at all.

Finally, we train a model by standard maximum likelihood estimation. Given
Xj and pjw are j-th samples of permutation of clip set {Xw, X1, ..., XN−1} and
corresponding wrong position,

θ∗ = arg max
θ

∑

j

L(fθ;X
j , pjw) (1)

where L is likelihood function (cross entropy), and fθ is our model parameterized
by θ. Since we focus on motion feature, pretext tasks should be solved by motion
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Fig. 2. The settings of wrong clip : The rectangles denote the frames in a clip
(D = 8) and rectangles which have same color and index indicates that each of them
is identical frame. We make three types of wrong clips from a correct ordered clip (a).
(b) Randomly Permutate. (c) Split and Swap where ps is set to 6. (d) Play Backward.

cue in input clips. With this in mind, we define several settings of wrong clip
using unlabeled videos as below (see also Fig. 2).

Randomly Permutate (RP) This setting is similar to Fernando’s [2], where they
aimed at capturing video representation by 2DCNN. We first select a video clip
of size W as a constrained window, then we sample different N clips including
D consecutive frames from this window. We randomly choose one of the clips
as a candidate of wrong clip X ′

w = ⟨x1, ..., xi, ..., xD⟩ where xi denote the i-th
frame of the clip. Then we permutate its frames randomly as a wrong clip Xw,
while the rest of clips are correct clips. Note that since wrong clips differ in only
temporal order, a model is required to utilize temporal information in other to
detect wrong one. In this setting, our major concern is that a model captures
relatively low-level temporal feature (e.g. detecting temporal blur) only, not high-
level (semantic) feature which is intuitively effective for action recognition.

Split and Swap (SS) As with RP setting, we sample one candidate of wrong
clip X ′

w and N − 1 correct clips from constrained window. In this setting, we
randomly choose a split position ps ∈ {2, ..., D − 1}, and swap two split clips to
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Table 1. Network architecture : In our experiments, C = 101 and N = 6.

Model Layer name Kernel Stride
size channel

conv1 (5, 11, 11) 3 → 64 (1, 4, 4)
pool1 (2, 3, 3) – (2, 2, 2)
conv2 (3, 5, 5) 64 → 192 (1, 2, 2)
pool2 (2, 3, 3) – (2, 2, 2)
conv3 (3, 3, 3) 192 → 384 (1, 1, 1)

3D-AlexNet conv4 (3, 3, 3) 384 → 256 (1, 1, 1)
conv5 (3, 3, 3) 256 → 256 (1, 1, 1)
pool3 (2, 3, 3) – (2, 2, 2)
fc1 – 9216 → 4096 –
fc2 – 9216 → 4096 –
fc3 – 4096 → C –

fc4 – 9216 → 128 –
for SiameseNet fc5 – 128N → 128N –

fc6 – 128N → N –

make a wrong clip.

Xw = SS(X ′

w, ps)

= ⟨xps
, ..., xD, x1, ..., xps−1⟩ (2)

In contrast to RP setting, a wrong clip has only one temporal inconsistency, and
it is considered that this makes pretext task somewhat more difficult than RP.

Play Backward (PB) In this setting, we play wrong clip backward, in other
words apply temporal-flip.

Xw = PB(X ′

w)

= ⟨xD, xD−1, ..., x2, x1⟩ (3)

This is inspired by Gidaris’s research [3], where they defined classification of
image rotation as pretext task. The intuition behind this setting is related to the
fact that in other to detect temporal-flipped videos a model is forced to capture
more semantic information. In more detail, a model localizes moving subject
(e.g. human, car, animal), recognizes the type and pose (e.g. where is it facing)
of them, detects the direction they are moving to, and then results in successful
classification. Specifically, since we use the videos for human action recognition,
the subject a model detects may be often human. The most important concern
of this setting is possibility of ambiguity. The distributions of videos belonging
to some classes (e.g. jumping on the spot) is much the same as that of temporal-
flipped videos and this means it is difficult for a model to solve the task.
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Table 2. Results.

Setting Pretrain acc.(%) Fine-tune acc.(%)
clip video

Scratch – 40.98 45.21
RP 99.21 44.96 49.20
SS 98.00 44.75 49.07
PB 17.65 40.01 44.97

Inflated – 55.12 60.13

3.2 Implementation

Following previous experiments of SSL [9, 8, 2, 3] where AlexNet [7] is used as
a baseline model, we construct 3D-AlexNet. The detail of architecture is shown
in Table1. Based on original architecture, 2D convolutional and pooling kernels
are expanded to 3D spatio-temporal kernels, and dropout layers are replaced
by batch normalization layers. This model takes 8 frames as input. During self-
supervised learning, to construct SiameseNet, we use layers from conv1 to pool3
(denoted by conv1-pool3) of 3D-AlexNet followed by fc4 as branch model, and
fc5, fc6 as fusion model. Training is run with W = 20, D = 8 and N = 6 on
UCF101 train set of split1. The initial learning rate is 0.0001 and batch size is
64.

When fine-tuning on action recognition, we initialize 3D-AlexNet with pre-
trained conv1-pool3 and random initialized fc1-fc3 follwed by softmax func-
tion. We fine-tune the 3D-AlexNet on UCF101 train set of split1 and set the
initial learning rate to 0.001 on fc6-fc8 and 0.0001 on conv1-pool6, and batch-
size to 64.

During final evaluation, we sample all non-overlapping clips from UCF101
test set of split1 as input and compute accuracy for each clip (clip-accuracy) from
the maximum conditional probabilistic estimate. Also, to compute accuracy for
each video (video-accuracy), we calculate arithmetic mean of the output from
all clips in the video, as conditional probabilistic.

4 Results and Discussion

The results are reported in Table2, where ”Scratch” means training 3D-AlexNet
on UCF101 without any pretraining and ”Inflated” represents inflating from 2D
version pretrained on ImageNet as a guide.

First, focusing on accuracy of pretext tasks, RP and SS setting are performed
in high accuracy and seem to be solved almost perfectly. From this observation, it
is expected that these settings is too easy for 3DCNN to capture efficient motion
feature. On the other hand, PB is performed in near chance rate (1/6 ≈ 16.67%),
and this implies that it is too difficult because of abovementioned ambiguity.

In spite of this expectation, as we can see in results of fine-tuining, pretrain-
ing on RP and SS improves performance of action recognition compared with
Scratch, even though still can not compete against Inflated. This improvement
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implies that low-level and easily available temporal feature can contributes to
better optimization of 3DCNN, and conversely this also means it is possible that
ordinary training strategy of action recognition misses this feature. Meanwhile,
we can not observe improvement by PB. The cause of this is considered to be the
fact that 3DCNN can not detect wrong clips. We confirm that certain perfor-
mance on pretext task is a necessary condition for improvement on target task.
Throughout the whole, our strategies still can not compete against Inflated.

5 Conclusion and Future works

In this study, we evaluate the effectiveness of self-supervised representation learn-
ing methods using temporal-sequence for 3DCNN. From results of experiments,
we obtain the knowledge that low-level and easily available temporal feature
from RP and SS improves optimization for 3DCNN and too difficult task to
solve can not contribute to improvement.

We discuss the future research below:
Analyzing effect of motion feature: Although we show the effectiveness of
SSL on 3DCNN in the form of improvement on accuracy, we should also explore
how captured motion feature affects 3DCNN and action recognition on other
experiments such as Huang et al.’s [5]
Removing ambiguity of PB: Despite intuition that PB setting can give
semantic information to 3DCNN, this setting did not make an improvement.
However, removing ambiguity of this task may lead to better result. For exam-
ple, limiting dataset, action class or spatial region to ones including more intense
motions.
Training on more large-scale DB: Since we set self-supervised manner, we
can assume getting the benefit of more large-scale data without manual annota-
tion. In previous work [4], training on immense number of video is significantly
effective for 3DCNN. This is worth trying on SSL for novel knowledge of motion
feature.
Fusing benefits of two features: Although we focus on motion feature, ap-
pearance feature obtained by Inflation is also strong. While we consider temporal
SSL and Inflation separately now, there may be an effective method to fuse ben-
efits of both initialization strategies.
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