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Abstract. Pose-Invariant Face Recognition (PIFR) has been a serious challenge
in the general field of face recognition (FR). The performance of face recogni-
tion algorithms deteriorate due to various degradations such as pose, illuminaton,
occlusions, blur, noise, aliasing, etc. In this paper, we deal with the problem of
3D pose variation of a face. for that we design and propose PosIX Generative
Adbversarial Network (PosIX-GAN) that has been trained to generate a set of nice
(high quality) face images with 9 different pose variations, when provided with a
face image in any arbitrary pose as input. The discriminator of the GAN has also
been trained to perform the task of face recognition along with the job of dis-
criminating between real and generated (fake) images. Results when evaluated
using two benchmark datasets, reveal the superior performance of PosIX-GAN
over state-of-the-art shallow as well as deep learning methods.

Keywords: Face Recognition - Pose - GAN - Multi-task Learning.

1 Introduction

Deep learning (DL) has attracted several researchers in the field of computer vision
due to its ability to perform face and object recognition tasks with high accuracy than
the traditional shallow learning systems. The convolutional layers present in the deep
learning systems help to successfully capture the distinctive features of the face [19,30].
For biometric authentication, face recognition (FR) has been preferred due to its passive
nature. Most solutions for FR fail to perform well in cases involving extreme pose
variations as in such scenarios, the convolutional layers of the deep models are unable
to find discriminative parts of the face for extracting information.

Most of the architectures proposed earlier deal with the scenarios where the face im-
ages used for training as well as testing the deep learning models [3,25,15] are frontal
and near-frontal. Further, the recent use of convolutional neural network (CNN) based
models [25,15,7,6,29,19,23], which provide very high accuracies for FR applications
even in the wild scenarios, fail to provide acceptable recognition rates in scenarios with
pose variations in faces. These models fail to perform well when the face images pro-
vided during testing are at extreme poses due to the inability of the models to find
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discriminative features in the images provided. On the contrary, our model uses a lim-
ited number of face images at different poses to train a GAN model (PosIX-GAN),
where nine separate generator models learn to map a single face image at any arbitrary
pose to nine specific poses and the discriminator performs the task of face recognition
along with discriminating a synthetic face from a real-world sample. In the following,
we present brief review of work done on face recognition using CNNs, generative ad-
versarial networks (GANs) as well as shallow methods for head pose estimation and
face recognition (FR).

The method proposed by [37] learns a new face representation: the face identity-
preserving (FIP) features. Unlike conventional face descriptors, the FIP features can
significantly reduce intra-identity variances, while maintaining discriminativeness be-
tween identities. The work by Zhu et al.[38] proposes a novel deep neural net, named
multi-view perceptron (MVP), which can untangle the identity and view features, and in
the meanwhile infer a full spectrum of multi-view images, given a single 2D face image.
Kan et al.[14] proposed a multi-view deep network (MvDN), which seeks for a non-
linear discriminant and view-invariant representation shared between multiple views.
The method proposed by Yin et al.[35] study face recognition as a multi-task problem
where identity classification is the main task with pose, illumination and expression
estimations being the side tasks. The goal is to leverage the side tasks to improve the
performance of face recognition. Yim ef al.[34] proposes a new deep architecture based
on a novel type of multitask learning, which achieves superior performance by rotating
a face from an arbitrary pose and illumination image to a target-pose face image (target
pose controlled by the user) while preserving identity. The method proposed by Wu et
al.[32] studies a Light CNN framework to learn a deep face representation from the
large-scale data with massive noisy labels The method makes use of a Max-Feature-
Map (MFM) operation to obtain a compact representation and perform feature filter
selection. The method proposed by Tran et al.[30] utilizes an encoder-decoder struc-
tured generator that can frontalize or rotate a face with an arbitrary pose, even upto
the extreme profile. It explicitly disentangles the representation learning from the pose
variation through the pose code in generator and the pose estimation in discriminator.
It also adaptively fuses multiple faces to a single representation based on the learnt
coefficients. The TP-GAN method proposed by Huang ef al.[13] performs photoreal-
istic frontal view synthesis by simultaneously perceiving global structures and local
details. It makes use of four landmark located patch networks to attend to local tex-
tures in addition to the commonly used global encoder-decoder network. The method
proposed by Liu ef al.[17] present a novel multi-task adversarial network based on an
encoder-discriminator-generator architecture where the encoder extracts a disentangled
feature representation for the factors of interest and the discriminators classify each of
the factors as individual tasks. Yang et al.[33] proposes a novel recurrent convolutional
encoder-decoder network that is trained end-to-end on the task of rendering rotated
objects starting from a single image.

The method proposed by Gourier ef al.[10] addresses the problem of estimating
head pose over a wide range of angles from low-resolution images. It uses grey-level
normalized face images for linear auto-associative memory where one memory is com-
puted for each pose using a Widrow-Hoff learning rule. Huang et al.[12] use Gabor
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feature based random forests as the classification technique since they naturally handle
such multi-class classification problem and are accurate and fast. The two sources of
randomness, random inputs and random features, make random forests robust and able
to deal with large feature spaces. The method proposed by Tu er al.[31] localizes the
nose-tip of the faces and estimate head poses in studio quality pictures. After the nose-
tip in the training data are manually labeled, the appearance variation caused by head
pose changes is characterized by tensor model which is used for head pose estimation.

The works proposed in [27,29,39] mainly deal with multi-stage complex systems,
which take the convolutional features obtained from their model and then use PCA
(Principal Component Analysis) for dimensionality reduction, followed by classifica-
tion using SVM. Zhu er al.[39] tries to warp faces into a canonical frontal view using
a deep network, for efficient classification. PCA on the network output in conjunction
with an ensemble of SVMs is used for the face verification task. Taigman et al.[29] pro-
pose a multi-stage approach that aligns faces to a general 3D shape model combining
with a multi-class (deep) network which is trained to perform the FR task. The compact
network proposed by Sun et al.[27,26,28] uses an ensemble of 25 of these networks,
each operating on a different face patch. The FaceNet proposed by Schroff et al.[23]
uses a deep CNN to directly optimize the embedding itself, based on the triplet loss
formulated by a triplet mining method.

Deep Convolutional GAN [20] (DCGAN) first introduced as a convolutional ar-
chitecture led to improved visual quality in Computer Vision (CV) applications. More
recently, Energy Based GANSs [36] (EBGANs) were proposed as a class of GANs that
aim to model a discriminator D(x) as an energy function. This variant converges in a
more stable manner and is both easy to train and robust to hyper-parameter variations.
Some of these benefits were attributed to the larger number of targets in the discrimina-
tor. EBGAN also implements its discriminator as an auto-encoder with a per-pixel error.
While earlier variants of GAN lacked an analytical measure of convergence, Wasser-
stein GANs [1] (WGAN:Ss) recently introduced a loss function that acts as a measure
of convergence. However, in their implementation, this comes at the expense of slow
training, but with the benefits of stability and better mode of coverage [1]. The BEGAN
model [4] utilizes a new equilibrium enforcing method paired with a loss derived from
the Wasserstein distance for training auto-encoder based Generative Adversarial Net-
works. It also provides a new approximate convergence measure, fast and stable training
and high visual quality.

Most of the methods of FR/FV discussed above do not show results on Head Pose
Image [©] and MultiPIE [ 1] datasets which have high degree of pose variation in the
query faces. Drawbacks of recent GAN based methods are blur, deformities as well as
inaccuracy in the synthesis process, as well as instability during training. The contri-
bution of our work on PosIX-GAN model includes synthesis of face images at various
poses given an input face image at any arbitrary pose, without much of the aforemen-
tioned drawbacks. Apart from this, the proposed model simultaneously performs face
recognition with high accuracy. Results are reported using 2 benchmark face datasets
with pose variation.

In the rest of the paper, Section 2 gives an overview of Generative Adversarial Net-
works (GANSs), Section 3 describes the proposed network architecture, along with de-
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tails about the loss functions used for training. Section 4 provides information about the
various datasets used for evaluation of our model. Section 5 reports quantitative as well
as qualitative results obtained from experiments performed and observations. Finally,
Section 6 concludes the paper.

2 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GAN) [&] are based on the adversarial training of
two CNN-based models: (i) a generative model (G), which captures the true data dis-
tribution, p4qt, and generates images sampled from a distribution p,, the distribution
of the training data provided as input; and (ii) a discriminator model (D), which dis-
criminates between the original images, sampled from pg,:,, and the images generated
by G. G maps p, from a latent space to the data distribution pg4;, of interest, while D
discriminates between instances from pg,+, and those generated by GG. The adversarial
training adopted for GAN, derived from Schmidhuber [22], involves the formulation
of an optimization function G to maximize the error in D (i.e., “fool” D by producing
novel synthesized instances that appear to have come from pqq4:,). Thus the adversarial
training procedure followed for GAN, resembles a two player minimax gaming strategy
between D and G of a zero-sum game [5] with the value function V' (G, D). The overall
objective function minimized by GANs [£], is given as:

minmax V(G, D) = Eznpyyy,[l0g D(2)] + Eonyp.[log(1 = D(G(2)))] (1)

To learn p, over data z, a mapping to data space is represented as G(z;0,), where
G is a differentiable function represented by a CNN with parameter set ¢,. Another
CNN based deep network represented by D(x; 04) outputs a single scalar [0/1]. D(x)
represents the probability that x is generated from the true data rather than p,.

The major drawback of such an adversarial system is that GANs fail to capture the
categorical information, when all the pixels of the image samples obtained from two
distributions, p44tq and p, are largely different from each other. We aim to overcome the
two drawbacks specified above, in addition to the severe degradation in performance of
the FR algorithms under severe pose variations, thus forming the underlying motivation
of the work presented in this paper.

3 The proposed network

The proposed architecture of PosIX-GAN deals with generating faces at nine different
poses from an input face (at any arbitrary pose), along with the task of pose invariant
face recognition (PIFR) with the help of nine categorical discriminators which produce
an output vector € RV*! for every image where N signifies the number of categories
and 1 signifies whether the input to the network D; is real or fake. For experimentation,
we resized the images across all datasets to 64 x 64 pixels, to be provided as input to
the generator module of PosIX-GAN. The overall architecture is detailed in Fig. 1, with
the individual generator (G) and the discriminator (D) are illustrated in Figs. 2 and 3.
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Fig. 1: The proposed architecture of PosIX-GAN, used in our work for PIFR. GE de-
notes the shared encoder of the generator network, GD;; i = {1,2,...,9} denotes
nine decoder networks connected to GFE. F; and R; refers to the set of fake and orig-
inal images. ID refers to the class IDs generated by the set of nine discriminator D;;
i={1,2,...,9} which also generates 0/1 to indicate a real or fake image. (best viewed
in color)

3.1 Architecture Details

Figure | shows an overview of the architecture of PosIX-GAN. The network consists
of two parts, generator and discriminator. The generator itself has two components: a
shared encoder network G F and nine decoder networks GD;; i = {1,2,...,9} and G;
is defined as (GE + G D;). The components are described as follows:

The encoder is a deep-CNN based architecture, shown in Fig. 2 (a), which takes
input images with resolution of 64 x 64 pixels and outputs a vector € R?°®, This encoder
architecture has been adopted from that proposed in BEGAN model [4]. The encoder
maps the input images to a latent space to produce an encoded vector, which acts as an
input to each of the nine decoder networks.

The proposed PosIX-GAN model consists of nine decoder modules (Fig. 2 (b))
which are attached to a single encoder network. The output from the encoder is fed as
the input to each of the decoder networks. The decoder output F; is then used along
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with a separate batch of real images R; with distinct poses angles (different for every
decoder network), while also preserving class information, to evaluate and minimize
the patch-wise MSE loss described later in Algorithm 1. This helps the decoder module
to learn to generate images at a specific pose given any image with an arbitrary pose.

The proposed model also consists of nine separate discriminator networks D;; ¢ =
{1,2,...,9}, shown in Fig. 3, which performs two tasks, recognizing fake images (F;)
generated by GD; from original images (R;) along with classifying input images into
separate categories. Thus, the discriminator minimizes three loss components, the loss
occurred when an original image is classified as a fake image, loss incurred due classi-
fication of generated image as real image and the categorical cross entropy loss which
ensures correct classification of the input images.

It may be noted that as the model consists of nine discriminator modules, it may
produce nine class-ids for the same input image. Thus, to evaluate the final class-id
for a given image during test time, we deploy the Max-Voting mechanism [16]. It is
to be noted that as the images provided to the decoder networks have a small variation
in pose and the model has already been trained sufficiently to discriminate between
different classes with varied tilt and pan angles, a group of decoder networks always
vote for the same class, which helps to perform max-voting.

3.2 Loss functions

The loss functions which have been employed in the proposed PosIX-GAN model are
defined as follows:

Patch-wise MSE Loss Patch-wise MSE (PMSE) loss is derived from the mean-squared
error between two images. Let p; and p, be the two patches extracted from a pair:
image; and images. The PMSE between image; and images, is calculated as:

|C| [p|
Lpmse(imagey, imagez) = ol S IpE ) — pl )2 )
i=1 =1

where, |C| & |p| specifies the number of channels and patches in the image, while the
subscript k in pj represents the image from which the patch is extracted and \;’s are
the weights of each channel in the image (A = {0.2989,0.5870,0.1141} as used in our
experimentations). A weighted linear combination of the three MSE’s components is
then used to estimate the overall MSE for each patch as given in Algorithm 1. PMSE is
the average MSE over all the patches.

Categorical Cross Entropy Loss Categorical cross-entropy [24] is a loss function used
effectively in the field of deep learning (DL) for multi-class classification problems and
sigmoid output units. The loss function is given as:

n

1 . .
Lece(X,Y) = - Z y @ Ina(z®) 3)

i=1
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Algorithm 1: Conceptual steps for Patch-wise MSE loss evaluation

function PMSE(im1, ims)
// PATCH.SIZE <+ 11 x 11 px
// stride <3 x3 px
mse) O;mse(g) +— 0; mse®) « 0
foreach patch {p1,p2} in {im,ims} do
mse(t) = mseV) + MSE(p:(Ll),pgl))
mse® :=mse® + MSE(pgg),pg))
mse® = mse® + MSE(p§3),p;3))
// a® « " channel of «
// MSE(a,b): as in equation 2
loss 1= 0.2989 x mseM) 4 0.5870 x mse(?0.1141 x mse(®)
=l
// |pi| + total number of patches
return P_avgoss

P*a'vgloss

where, X = { S N ,:c(”)} is the set of input examples in the training dataset, and

Y = {y(l), e 7y(”)} is the corresponding set of labels for those input examples. The
function a(x) represents the output of the neural network (perceptron) given input .

3.3 Training using multi-objective adversarial loss function

Adversarial training has been used for the training of PosIX-GAN, which minimizes the
loss functions within generator (£“Gd’”) and discriminator ([Z‘}j‘“’). The encoder network
transforms the input image into a 256-dimensional vector which is then fed to each of
the nine decoder networks, producing nine 64 x 64 px. images at different poses. Thus,
the adversarial loss corresponding to G is given as:

LEY = Loee( D(GIP)), 1) + Loee(DIGIP)),y) + Lomse (17, GUIP)) 4

where, I are the real-world face images and B indicates the batch, while r represents
nine specific pose angles (see Section 4 for further details.), y are the class labels. L, ¢
and L. are defined earlier in eqs. 2 and 3. The three components of eq. 4 are described
subsequently. To ensure that the generated images are similar to the original image, the
first component is formulated as:

9
Ecce(D(G(IB))al) = Z‘CCCE(Di(Gi(IB»vl) )

i=1

The following loss function captures the class information and helps to ensure that
the generated images resemble the real images of the same class:

9
ﬁcce(D(G(IB)),y) = Zﬁcce(Di(Gi(IB))vy) (6)
=1
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Fig. 2: The architecture of the Generator module G; which contains a (a) shared encoder
module, and a set of nine (b) decoder modules (best viewed in color).

Finally, the PMSE loss function is given as:

9
[’pmse(ITBvG(IB)) = Zﬁpmse((IrB)hGi(IB)) 7

i=1

It is to be noted that (I7); corresponds to R; as shown in Fig. 1, for each decoder
GD;. Each of the decoder modules of the generator is fed with the generated images.
The decoder modules make use of corresponding real images of the same class at a
predefined pose along with these generated images to find a mapping between any ar-
bitrary image and the generated image at a certain pose, while also preserving class-
information by minimizing the patch-wise MSE loss which is described in Section 3.2.

Post generation of images by G, the discriminators D; (shown in Fig. 3) perform
two tasks: (a) it discriminates the images that are generated by G from the original
images, and (b) also classifies the images to provide their class-IDs. The training of D

CONV2D (5, 5) 64
MAXPOOL
CONV2D (5, 5)

MAXPOOL

64

1024
(1,15)

Fully Connected

Fully Connected

-1

Fig. 3: The architectural details of a single Discriminator module (D;) (see Fig. 1) (best
viewed in color).
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is also based on the adversarial loss, described as:
LEY = Lece(DUP),1) + Lece(D(G(IP)),0) + Leee(D(G(IP)),y)  (8)

where, L.c.(D(G(IP)),y) is the categorical cross-entropy loss. The three terms of eq.
8 are further described subsequently. The first loss component helps the discriminator
network to learn to correctly classify the original images as real, given as:

9
Lece(D(IP),1) =Y Leae(Di(17),1) ©)

i=1

The following loss component ensures that the images generated by the generator
network are correctly identified as fake images by the discriminator network:

9
Leee(D(G(I?)),0) = > Lece(Di(Gi(17)),0) (10)

=1

Finally, the last term of the loss function (eq. 8) given below helps the discriminator
network to correctly classify each face image.

9

ﬁcce(D(G(IB)),y) :Zﬁcce(Dz(Gz(IB))vy) (11)

i=1

The introduction of the class-IDs reinforces stabilization during adversarial training
of PosIX-GAN, facilitating a faster convergence [2 1] of the network to an equilibrium.
As the nine discriminators produce nine labels for the same input image, we use max
voting mechanism [ | 6] to ascertain the class label for a certain image during testing.

4 Datasets used for Experimentation

We have used two datasets for experimentation purposes, viz. Head pose Image Database
(HPID) [9] and the Multi-PIE dataset [ 1]. The dataset statistics are described below:

4.1 Head Pose Image Database (HPID)

The head pose image database is a benchmark of 2790 monocular face images of 15
persons with variations of pan and tilt angles from -90 to +90 degrees. Two series of
images were captured for each person, having 93 images (each having a distinct pose)
in each series. The purpose of having 2 series per person is to be able to train and test
algorithms on known and unknown faces. People in the database wear glasses or not
and have various skin color. Background is willingly neutral and uncluttered in order to
focus on face operations. Fig. 4 shows the pose variations present in the dataset where
the values represented as (-, -) on top of the images indicate the (tilt, pan) angles.
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99929300 ¢ee

Fig. 4: A few samples from the Head Pose Image Dataset (HPID) [ 10] showing the pose
variations that are present in the dataset (best viewed in color). The values represented
as (+,-) on top of the images indicate the (tilt, pan) angles.

For the purpose of our experimentation, we make use of the complete series 1 and
40% of series 2 for training the PosIX-GAN and use the rest for testing purposes. For
the patch-wise MSE loss, we separate a few images per subject from the training set
itself and group them into nine sets by the nine tilt angles present across the dataset
while clubbing together images at different pan angles under each category, as shown
above in Fig. 4. These faces are then utilized by the decoder network to evaluate the
patch-wise MSE loss.

4.2 Multi-PIE Dataset

To systematically capture images with varying poses and illuminations a system of 15
cameras and 18 flashes connected to a set of Linux PCs was used. Thirteen cameras
were located at head height, spaced at 15 intervals, and two additional cameras were
located above the subject, simulating a typical surveillance view. During a recording
session 20 images were captured for each camera: one image without any flash illumi-
nation, 18 images with each flash firing individually, and then another image without
any flash. Taken across all cameras a total of 300 images was captured within 0.7 sec-
onds. Fig. 5 shows a few samples from the Multi-PIE dataset where the values on top
of the images indicate the corresponding pan angles.

45° 30° 15° 0° -15° -30° -45° -60°
+ = — F i

Fig.5: A few samples from the Multi-PIE dataset [! 1] showing the pose variations
present in the dataset (best viewed in color). The values on top of the images indicate
the corresponding pan angles.

Subjects were seated in front of a blue background in close proximity of the camera.
The resulting images are 3072 x 2048 in size with the inter-pupil distance of the subjects
typically exceeding 400 pixels. The part of the dataset with neutral expression was only
used for experimentation purposes.

Images across Sessions 1-4 with neutral facial expressions was used for experimen-
tation purposes. As our method does not deal with low illumination images, we only
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Table 1: Rank-1 Recognition Rate for different state-of-the-art methods on the Multi-
PIE [11] dataset (in %). Results in bold shows the best performance. All the results

except the last row (ours) have been directly reported from [32,30,13].

SI.  Algorithm +15° +30° +45° +60° £75° £90°
1 Zhuetal[37] 90.7 80.7 64.1 45.9 - -

2  Zhuetal[38] 92.8 83.7 72.9 60.1 - -

3 Kanetal[l4] 100 100 90.6 85.9 - -

4 Yinetal[35] 99.2 98.0 90.3 92.1 - -

5  Yim et al.[34] 76.64 79.1 78.4 79.2 - -

6 Wueral[32] 100 99.9 99.6 95.0 323 9.0
7 Tran et al.[30] 94.0 90.1 86.2 83.2 - -

8 Liueral[l7] 95.3 89.7 87.9 84.1 - -

9 Huangeral[13] 98.7 98.0 95.4 87.7 77.4 64.6
10 Ours 100 100 100 97.8 85.3 80.6

used well illuminated face images (file names ending with 06-09) at all pose variations,
except Sections 08_1 and 19_1, for experimentation. The filtered data, thus obtained,
was randomly partitioned into training (70%) and test (30%) data. As in the case of
HPID, a few samples were seperated out from the training set (specifically, from the
following nine Sections 04_1, 05_0, 05_1, 08_0, 09_0, 13.0, 14_0, 19.0, 20_0; for the
nine decoder networks) and divided into the nine pan angles as shown above in Fig. 5.
These nine set of images were then provided as input to the nine decoder networks in G
for evaluation of the PMSE loss, thus enabling each of the networks to learn a mapping
between any arbitrary pose to a predefined pose (separate for every decoder GD;).

5 Experimental Results and Observations

The experimentations are performed on a machine with Dual-Xeon processor and 256GB
RAM, having 4 GTX-1080 Ti GPUs. The implementations are all coded in Keras plat-

form using tensor flow-backend. The model weights were all randomly initialized and

was trained on GPU for 5-6 hours. The batch size was kept to 10 and the input size of

the network is kept to 64 x 64 pixels.

In the following sections, we report the quantitative results (using Rank-1 recog-
nition rates) as well as qualitative results (faces generated at various poses). We also
provide with results where patch-wise MSE loss is not incorporated using the training
phase to show the effectiveness of the PMSE loss to obtain crisp result.

5.1 Quantitative Results

Table 1 reports the experimental findings of our proposed method, compared with eight
state-of-the-art methods, using the Multi-PIE dataset [ 1]. All the images were cropped
using Chehra [2] to discard the background. The Rank-1 recognition rates of the meth-
ods listed in Table 1 have been directly reported from [32,30,13] for the dataset. The
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Table 2: Rank-1 Recognition Rate for different state-of-the-art methods on the Head
Pose Image Dataset [9] dataset. Results in bold shows the best performance. All the
results except the last row (ours) have been directly reported from [12].

SL Algorithm Classification Accuracy
Gourier experimental settings see Table 2 of [18]
1 Human Performance [10] 59.0
2 Associative Memories [10] 43.9
3 VRF+LDA [12] 66.9
Jilin Tu experimental settings see Table 2 of [18]
4 High-order SVD [31] 54.8
5 PCA [31] 57.9
6 LEA [31] 50.6
7 VRF+LDA [12] 62.6
Proposed experimental settings (see Section 4.1)
Huang et. al [13] 81.8
9 Ours 92.1

missing values in the table are not reported by the respective authors in their paper. Al-
though, for lower pose variations the method proposed by Wu et al.[32] performs the
2"4 pest, but it fails at major pose variations like £75 — 90°, where the TP-GAN [13]
performs the 2"? best. Comparing all the results reported in table 1, it may be noted that
our method outperforms all other techniques by a considerable margin.

Experiments have also been carried out on the Head Pose Images Dataset [9] where
the dataset partition strategy mentioned in Section 4.1 has been followed for evaluating
the proposed method. The preprocessing procedure in this case remains the same as
that done for Multi-PIE dataset. Table 2 reports the Rank-1 recognition rates of the
proposed method along with a few classical methods on this dataset. From table 2, it
can be seen that our method outperforms all other compared methods by a large margin.
The method proposed by Huang et al.[13] again provides the 2"¢ best performance.

5.2 Qualitative Results

In this section, we show a few synthetic images generated by PosIX-GAN and also
compare our performance with a hybrid BEGAN [4] model implemented without the
PMSE loss. Fig. 6 shows the generated result by our proposed model PosIX-GAN. The
second set of images shown in Fig. 7, which are generated without the use of PMSE
loss, exhibit lack the crispness compared to that in Fig. 6. The first set of images have
good clarity and are closer to the ground truth compared to the second of images which
are blurry with aliasing effects throughout. The numerical values at the end of each row
in Figs. 6 and 7 indicate the average PSNR/SSIM values for those in each row.
Further, we also compare the synthesis results of DR-GAN [30], MTAN [17] and
RNN [33] methods with the proposed PosIX-GAN. Figures 8 and 9 show a few face
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Fig.6: Images generated by our proposed PosIX-GAN model along with the
PSNR/SSIM values (best viewed in color). The numerical values at the end of each
row indicate the average PSNR/SSIM values for the complete row.
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Fig. 7: Images generated by the hybrid BEGAN model (without PMSE loss) along with
the PSNR/SSIM values for each image (best viewed in color). The numerical values at
the end of each row indicate the average PSNR/SSIM values for the complete row.

The PSNR/SSIM values estimated for the images indicates the superiority of our
method compared to the existing state-of-the-art methods. A noticeable drawback among
all methods is their inability to produce crisp images without deformities at extreme
poses. The faces generated by PosIX-GAN are devoid of any such deformities and are
quite crisp even at extreme pose.
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Fig.9: Comparison of images generated with RNN [33] (left) and MTAN [17] (right)
with the proposed PosIX-GAN for Multi-PIE dataset [ 1] (best viewed in color).

The images generated by the DR-GAN method [30], shown in Fig. 8, exhibit defor-
mities as well as inaccuracies in the generated faces (beard not present in the generated
images of Multi-PIE [ 1], while being present in the ground-truth). The output gen-
erated by the MTAN method [17] (Fig. 9; right) is blurry and the quality of synthesis
deteriorates with larger values of the pan angle as evident from the PSNR/SSIM values.
The RNN method [33] performs the 2" best in face generation task, which can be ver-
ified visually, as well as, from the PSNR/SSIM values reported for each image in Fig.
9 (left). However, this method can only generate images upto a pan angle of +45°.

6 Conclusion

This paper proposes a single-encoder, multi-decoder based generator model as a modi-
fied GAN boosted by multiple supervised discriminators for generating face images at
different poses, when presented with a face at any arbitrary pose. The supervised PosIX
GAN can act as a pre-processing tool for 3-D face synthesis. The qualitative as well as
the quantitative results reveal the superiority of our proposed technique over few recent
state-of-the-art techniques, using two benchmark datasets for PIFR. The PosIX model
is capable of handling extreme pose variations for generation as well as recognition
tasks, which most of the state-of-the-art techniques fail to achieve. This method also
provides a basis for multiple image 3D face reconstruction, which can be explored in
the near future for generating faces with dense set of pose values.
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