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Abstract. This paper proposes an approach for RGB-D object recogni-
tion by integrating a CNN model with recursive neural networks. It first
employs a pre-trained CNN model as the underlying feature extractor
to get visual features at different layers for RGB and depth modalities.
Then, a deep recursive model is applied to map these features into high-
level representations. Finally, multi-level information is fused to produce
a strong global representation of the entire object image. In order to
utilize the CNN model trained on large-scale RGB datasets for depth
domain, depth images are converted to a representation similar to RGB
images. Experimental results on the Washington RGB-D Object dataset
show that the proposed approach outperforms previous approaches.

Keywords: Convolutional Neural Network · Recursive Neural Network
· Transfer Learning · RGB-D Object Recognition.

1 Introduction

The prevalence of depth sensors has led to an increasing attention in devel-
oping numerous applications in computer vision and robotics. RGB-D object
recognition is a challenging fundamental task among these applications. In the
meantime, deep learning based methods have surpassed the conventional feature
extraction based methods and dominated the field. The breakthrough of convo-
lutional neural networks (CNNs) has enabled to replace hand-engineered feature
representations with efficient transferable off-the-shelf features. Deep features
have been the focus of various research efforts including object recognition (e.g.
[29], [27]), detection (e.g. [16], [28]), and semantic segmentation (e.g. [16], [15]),
since they offer biologically-inspired valuable information at hand. A common
approach among these methods is to use the features extracted from the final
fully-connected layers. The main reason behind this is that these features pro-
vide object-specific semantic information with smaller dimensions. However, as
moving towards the final layers, it has been observed that these features are in-
creasingly dependent on the chosen dataset and task [35]. On the other hand, the
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earlier layers capture distinctive information about the task and provide locally-
activated features which are less sensitive to semantics [18,36]. One challenge
of the earlier layers is the high dimensionality of features extracted from them.
Consequently, features are transformed from general to specific throughout the
network and the relational interest information is distributed across the network
at different levels [35,18]. However, it is unclear how to exploit the information
effectively.

The purpose of this paper is to develop a reliable deep feature learning ap-
proach to obtain more accurate classification of RGB-D objects by combining
two key insights. The first is to employ a pre-trained CNN as a feature extractor
and utilize information at different layers of the network to yield better recogni-
tion performance. The second is to apply recursive neural networks (RNNs) to
reduce the dimensionality of the features and encode the CNN activations in ro-
bust hierarchical feature representations. The idea of combining a trained CNN
model with the RNN structure is first presented in [8] for RGB image classifica-
tion. After carrying out several experiments, the authors find that the activation
weights from the 4th layer of the pre-trained network in [9] transformed by RNNs
are more suitable and robust for RGB image classification. Our aim in this work
is to improve on this idea by gathering feature representations at different levels
in a compact and representative feature vector for both RGB and depth data.
However, unlike [8], we reshape the activation maps of each layer to give the
multiple RNNs in order to reduce the feature dimension. This provides a generic
structure for each layer by fixing the tree structure without hurting performance
and it allows us to improve recognition accuracy by combining feature vectors at
different levels. The incorporation of multiple fixed RNNs together with the pre-
trained CNN model allows feature transition at different layers to preserve both
semantic and spatial structure of objects. Additionally, we embed depth data
into the RGB domain by using surface normals in order to transfer information
from a CNN model trained on the ImageNet dataset [12]. To this end, depth
maps are colorized by computing three dimensional surface normals and treat-
ing each dimension as a color channel. The information from RGB images and
depth maps are fused to obtain final RGB-D classification results. The proposed
method is then evaluated and compared with the current state-of-the-art meth-
ods on the popular Washington RGB-D Object dataset [23] in terms of classifi-
cation accuracy. The experimental results show the effectiveness of the proposed
method both in terms of feature dimensions and classification accuracy. Hence,
the contributions of this paper cover the following issues (The source code for
our approach is available at: https://github.com/acaglayan/exploitCNN-RNN):

1. We present a novel deep feature learning pipeline which encodes information
at different layers by incorporation of RNNs with a pre-trained CNN model
for RGB-D object categorization.

2. We investigate features produced by a pre-trained CNN model and our
pipeline. We show that RNNs represent activation maps of CNNs in a lower-
dimensional space without hurting performance and allows us to encode

https://github.com/acaglayan/exploitCNN-RNN
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information at multiple levels to get further hiearchical compact representa-
tions.

3. We define a way to allow transfer learning for depth data from a CNN
model trained on RGB images. To do that, we compute surface normals
from depth maps and normalize them. Despite the characteristic difference
between depth and RGB data, the results suggest that a pre-trained CNN
on RGB images can effectively capture information from depth images in
this way.

4. We provide experimental evidence showing our method improves the state-
of-the-art results on the Washington RGB-D Object dataset for category
recognition.

2 Method

Encouraged by the recent tremendous advances in deep learning techniques,
in this work, we explore the effectiveness of using a pre-trained CNN model
together with RNNs to recognize object categories for RGB-D data. Specifically,
we employ the pre-trained CNN model in [9] called VGG-f, which has been
widely used for object recognition (e.g. [36,8]). In order to leverage the power of
CNNs pre-trained over the large-scale RGB datasets such as ImageNet [12] for
depth data, we pre-process the depth inputs to encode three color channels at
each pixel. We first compute the three-dimensional surface normals from depth
maps in which each dimension represents a color channel. Then, the channels
are scaled to map values to the 0 - 255 range.

The structure of our approach is shown in Fig. 1. The proposed approach
includes a two-step hierarchical feature learning procedure. In the first step, ac-
tivation maps are extracted from the pre-trained CNN model at different levels
to capture useful translational invariant features. Then, these activation maps
are reshaped to reduce dimensions and given to the multiple fixed-tree RNNs to
learn hierarchical high-level features of the images. To learn these features, we
adapt the proposed work by Bui et al. [8]. They use RNNs with a pre-trained
CNN model for feature extraction in an RGB-D object benchmark using only
RGB images. The key of their approach is giving the output activation maps of
a single intermediate layer as is to the recursive network structure. In contrast
to this setting, we however want to efficiently combine features at multiple lev-
els to obtain complementary different feature patterns for both RGB and depth
images. Therefore, we modify the baseline framework in several ways. We first
reshape the activation maps of the CNN model to cope with the high dimen-
sionality of the produced feature vector of RNNs. This allows us to capture
information at different layers for further classification performance. As such,
multiple layers provide a compact and representative feature vector for each
object class. Secondly, we compute surface normals from depth maps and en-
code to the RGB color modality to make use of the large-scale RGB dataset
of ImageNet for depth modality by transfer learning. Finally, we combine the
final feature vector of RGB and depth streams to build highly accurate RGB-D
object category recognition method.
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Fig. 1. Overview of the proposed method. The inputs of our approach are RGB images
and colorized surface normal images. A pre-trained CNN [9] is employed to extract
raw features at different layers. The multiple RNNs are used to learn higher level
representations on a fixed tree structure. The learned representations at different layers
are fused for final feature vectors of RGB and depth domains and given to a linear SVM
classifier.

We use the pre-trained VGG-f model as a feature extractor without fine-
tuning. Therefore, the procedure requires no training at feature extraction stage
and works fast. The network consists of 5 successive convolutional layers (each
might have sub-modules including convolution, pooling, and local contrast nor-
malization operations) followed by 3 fully-connected layers and produces a dis-
tribution over the ImageNet dataset [12]. The dimensions of activation maps ob-
tained from each layer are 27×27×64, 13×13×256, 13×13×256, 13×13×256,
6 × 6 × 256, 4096, 4096, and 1000. The final fully-connected output is the fea-
ture representations over the 1000-classes of the ImageNet. For other layers, we
reshape the activations by fixing the number of filter bank sizes to 64. Thus,
for example, the outputs of fully-connected layers are formed into 8 × 8 × 64
dimensions, and the convolution layers with the same size are converted into
26 × 26 × 64. In this way, the new structures provide a generic ease of use and
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reduce the size of feature vectors generated by RNNs without sacrificing perfor-
mance. We refer the readers to [9] for further details of the pre-trained network
structure.

After computing activations by forward propagating input images through
the pre-trained CNN model, we employ RNNs, whose inputs are the outputs
of the CNN, to learn compact global feature representations. RNNs are well-
studied models [26,33,32] that can learn higher level representations by applying
the same operations recursively on a tree structure. Each layer merges blocks of
adjacent vectors into a parent vector with tied weights where the goal is to map
inputs X ∈ R

K×r×r into a lower dimensional space p ∈ R
K through multiple

layers in the end. Then, the parent vector is passed through a nonlinear squash
function. In this work, we use the tanh function in order to preserve the original
work but any squash function that provides an adequate nonlinearity may be
used (e.g. the hyperbolic tangent sigmoid or the elliot sigmoid functions. See
Section 4.1). A single RNN structure produces a K -dimensional vector, where
K is the length of a given input (filter bank size). We use multiple randomly
initialized N RNNs in our work. Therefore, a total of (N ×K )-dimensional final
matrix is produced in the end.

The role of RNN in the process is twofold. First, it reduces the feature space
dimensionality and maximizes classification performance. Thus, it allows us to
transfer information from multiple layers effectively. Second, intuitively, the se-
mantic content of the child nodes is recursively aggregated into the parent node
through the structure. In this way, the resulting information represents the con-
textual description of the entire image. Moreover, RNNs are random-weight
based architectures without requiring back-propagation. Unlike CNNs, RNNs
use non-overlapping receptive fields. Specifically, the RNNs in this study are of
one-level with a single parent vector. Thus, they are computationally fast.

3 Related Work

The currently dominant object recognition solutions are based on deep feature
learning techniques. The key enabling factors behind this are that these tech-
niques rely on biologically-inspired learning models that can automatically ob-
tain relevant information from the very low tier of the inputs and the ability to
optimize them for the problem at hand. Recent works have shown that a trained
CNN on a large-scale dataset can effectively be used to generate good generic
representations for other visual recognition tasks [29,35,2,25]. Gupta et al. [17]
encode the depth information in three channels using the camera parameters
of the inputs in order to utilize a pre-trained CNN model on large-scale RGB
images and focus on RGB-D object detection. Schwarz et al. [27] present an ap-
proach for RGB-D object recognition and pose estimation using the fc7 and fc8

activations of the pre-trained CNN of Krizhevsky et al. [22]. A different related
approach is proposed by Eitel et al. [13]. They employ a two-stream CNN, one
for each modality of RGB and depth channels which are finally combined with a
late fusion network. They initialize both streams with weights from a pre-trained
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network on the ImageNet [12] and fine-tune for the final classification. The re-
cent work of [36] uses a spatial pyramid pooling strategy at different layers of the
network to encode activations of all layers before feature concatenation. Their
approach of aggregating information at different levels has inspired us in this
work. Asif et al. extract fc7 features from the pre-trained VGGnet model [31]
for five different feature maps to encode the appearance and structural informa-
tion of objects.

Other methods based on deep feature learning have also been developed.
The convolutional k-means descriptor (CKM) [5] is proposed to learn features
around SURF [4] interest points. The pioneer work of Socher et al. [32] has been
employed for the semi-supervised method of Cheng et al. [11] to utilize grayscale
images and surface normals in addition to RGB and depth images. The same
work also has been used in the subset based method of Bai et al. [3] to extract
patches from several subsets for filter learning. The method of convolutional
fisher kernels (CFK) [10] is proposed to integrate CNNs with Fisher Kernel
encoding for RGB-D object recognition. Despite its success in terms of accu-
racy performance, it appears to suffer from a very high-dimensional final feature
vector for classification. Zia et al. [38] propose a method that learns RGB infor-
mation using the pre-trained model of VGGnet [31] and depth information using
3D CNNs to fully exploit the 3D spatial information in depth images. They also
propose a hybrid 2D/3D CNN model initialized with pre-trained 2D CNNs and
fine-tuned later. They finally concatenate the features from this hybrid structure
with the features learnt from depth-only and RGB-only architectures to feed the
resulting vector to a classifier for overall recognition performance.

Recursive neural networks (RNNs) [26,33] process structured information by
graphs transformed into recursive tree structures to learn distributed represen-
tations and have been used in conjuction with other architectures for various
research purposes [33,32,3,11,30,21]. In [32], Socher et al. have first introduced
an RGB-D object recognition method using the collaboration of CNN with RNN
to first learn RGB and depth features in a separate stage and then merge for final
classification. Later, this idea has been extended to replace the single CNN layer
with a pre-trained CNN model by Bui et al. in [8] for RGB images. The achieve-
ment of the AlexNet-RNN [8] shows that transforming features extracted from
a pre-trained CNN model by a recursive network structure can greatly increase
classification accuracy in RGB object recognition. In this paper, we adapt the
pipeline of [8] for RGB-D object recognition with a new structure and follow the
idea of [18,36] to utilize information extracted from multi-layers. In this respect,
the proposed approach learns robust representations of objects. The empirical
evaluation reveals the effectiveness of the proposed approach for RGB-D object
recognition by improving the accuracy performance significantly while reducing
the feature dimension on the widely used Washington RGB-D Object dataset
[23].
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4 Evaluation

We evaluate the proposed method on the Washington RGB-D Object dataset
[23]. The dataset contains 41, 877 RGB-D images of 51 household object cat-
egories and 300 instances of these categories. The experiments are carried out
using the 10 train/test splits provided in [23]. For each split, there are roughly
35, 000 training images and 7, 000 test images. From each category, one instance
is used for testing and all the remaining instances are used for training. All the
inputs are resized to 224× 224 pixels for convenience to the VGG-f model. The
dataset also provides object segmentation masks. Since the background of images
is fixed and simple with no cluttered view, we do not extract the background as
an extra preprocessing step. Our pipeline could easily handle the background.
We first evaluate experimental results with model analysis. Then, we compare
the category recognition performance of our approach with several the state-
of-the-art methods. We use the open-source MatConvNet toolbox [34] and the
provided pre-trained CNN model with it. The obtained feature representations
are classified by using a linear SVM classifier (Liblinear [14]).

4.1 Model Analysis

We analyze our approach through several model variations. We first experi-
mentally investigate the effect of squashing functions for the RNN on accuracy
performance. To this end, we use four different nonlinearities including ReLU ,
tanh, tansig, and elliotsig functions. We use the same random weights to ensure
a valid comparison of non-linearities. As shown in Fig. 2, the results are close
to each other in general. However, there is a slight difference between the ReLU
and the other nonlinearities. While the ReLU function gives better results for
depth data, the others acquire better success for RGB data. Since the difference
is negligible, we use the tanh nonlinearity function in this study in order to
preserve the original RNN work [32].

Fig. 2. Effects of different squashing functions for the RNN in terms of classification
accuracy (%).
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We then evaluate the effect of the RNNs on intermediate layers (conv3, conv4,
and pool5). As can be seen from Fig. 3, the RNNs improve classification perfor-
mance by significantly reducing the feature size (more than ×5 times for layers
3 and 4). The accuracy performance increases for RGB, while for depth it de-
creases slightly (∼1%). Nevertheless, the compact representation of the RNNs
is preferable as it reduces the computational cost significantly and allows us to
fuse the output of multiple layers to gain superior performance. We have chosen
one of the splits as our development fold for our experiments until now. We use
the all 10 splits in the rest of the experiments.

Fig. 3. Effects of RNNs in terms of accuracy performance and feature size on the
mid-level raw features of the pre-trained CNN.

In our experiments, we particularly focus on the intermediate layers. The
reason for this is our intuitive assumption that the outputs of the middle layers
will be the optimal representations. Because it has been shown that features are
eventually transformed from general to specific through deep networks [37,29].
While early layers response to low-level raw features such as corners and edges,
late layers extract more object-specific features of the trained datasets. Thus,
intermediate levels of the network present the optimal representations. Fig. 4
shows the average accuracy performance of each individual layer on the 10 splits
together with the standard deviation. The plot verifies our assumption with a
clear upward trend at the beginning and downward trend at the end.

We now move on to the empirical analysis of accuracy performance on vari-
ous combinations of these mid-level representations. Table 1 presents the results
demonstrating that combining feature representations at different levels signif-
icantly improves the accuracy. The combination of 4th and 5th levels for RGB
gives the best accuracy, while for depth the 3th, 4th, and 5th level representa-
tions together produce the best result.
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Fig. 4. Accuracy performance of our approach for individual layers.

Table 1. Accuracy performance for different combinations of the mid-level layer
fusions (%).

RGB Depth Feature Size

Layer3 + Layer4 89.0 ± 1.4 83.0 ± 1.7 16,384

Layer3 + Layer5 89.4 ± 1.5 83.5 ± 1.7 16,384

Layer4 + Layer5 89.9 ± 1.6 83.4 ± 1.7 16,384

Layer3 + Layer4 + Layer5 89.8 ± 1.5 84.0 ± 1.8 24,576

Finally, we fuse RGB and depth features together to evaluate combined RGB-
D accuracy performance. To this end, we first consider the fusion of single layer
representations that give the best results for RGB and depth separately. We then
evaluate the fusion of the two layers that together provide the optimal results
for RGB and depth based on the analysis in Table 1. The average accuracy
results with standard deviations are reported in Table 2. Considering fusion
of more layers increases the dimensionality of the feature space, which makes
classification intractable with limited computational resources. Therefore, we do
not consider more layers since the high accuracy advantage of our approach
might fade with larger number of features.

In our experiments, we have observed that there is a slight difference be-
tween performing image normalization and non-normalization. When we apply
image normalization, our best accuracy average drops by 0.2% for RGB, while it
increases by 0.3% for depth. Therefore, in all experiments, we apply image nor-
malization based on the ImageNet for depth and there is no image normalization
for RGB.
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Table 2. Combinations of RGB and depth data together for the final RGB-D accuracy
results (RGB4 denotes the result of 4th layer for RGB domain, RGB(4+5) shows the
fusion of 4th and 5th layers).

Accuracy (%) Feature Size

RGB4 + Depth5 92.0 ± 1.3 16,384

RGB(4+5) + Depth(4+5) 92.5 ± 1.2 32,768

4.2 Comparative Results

In Table 3, we present accuracy results on the Washington RGB-D Object
dataset, comparing our best-performing approach against several the state-of-
the-art methods. The proposed method achieves the highest recognition accuracy
for RGB and the combination of RGB and depth (RGB-D) data. The feature
size of the AlexNet-RNN [8], which produces the closest results to our result for
RGB, is twice as big as ours. As for the depth data, our approach gives quite
competitive results and outperforms all the other methods except that of [36]
and [10]. The Hypercube [36] utilizes color information for point cloud embed-
ding. Thus, unlike other methods, the reported result of this method does not
rely on pure depth information. The CFK [10] generates a feature set with a
size of 1, 568, 000 which is about ×64 times larger than that of our method. On
the other hand, one reason for the lower success of depth modality comparing to
RGB might be that we employ a CNN model trained on the RGB dataset of Im-
ageNet as the underlying feature extractor. This makes sense because these two
data modalities have different characteristics. As a result, the proposed method
learns effective discriminative deep feature representations in a fast way without
requiring training and produces superior accuracy performance results.

We also present the accuracy performance of the individual object categories
in Fig. 5. The results demonstrate that our approach gives high performance for
most of the object categories. In general, the categories with lower results are
mushroom, peach, and pitcher classes. The main reason for this seems to be that
these categories only contain three instances, which is the minimum instance
number in the dataset. Hence, this imbalance of the dataset may have biased
the learning to favor of categories with more examples. In addition, intra-class
variations and inter-class similarity of the object categories may make the classi-
fication difficult. In particular, the similarity of many categories in the Washing-
ton RGB-D Object dataset leads to confusion in classification. For example, the
presence of many geometrically similar categories in the dataset leads to lower
depth accuracy in classes such as ball, lightbulb, lime, pear, potato, and tomato.
Also the depth accuracy is low in the camera category, whose shiny surfaces may
cause corruptions in depth information. As for the RGB data, the success rate
is lower in some classes, where texture information is weak in addition to the
above common problems (e.g. bowl and plate).
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Table 3. Accuracy comparison of our approach with the related methods on the Wash-
ington RGB-D Object dataset (%).

Method RGB Depth RGB-D

Kernel SVM [23] 74.5 ± 3.1 64.7 ± 2.2 83.9 ± 3.5

HKDES [6] 76.1 ± 2.2 75.7 ± 2.6 84.1 ± 2.2

KDES [7] 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1

CKM [5] - - 86.4 ± 2.3

CNN-RNN [32] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3

Subset-RNN [3] 82.8 ± 3.4 81.8 ± 2.6 88.5 ± 3.1

CNN Features [27] 83.1 ± 2.0 - 89.4 ± 1.3

MM-LRF-ELM [24] 84.3 ± 3.2 82.9 ± 2.5 89.6 ± 2.5

CNN-SPM-RNN [11] 85.2 ± 1.2 83.6 ± 2.3 90.7 ± 1.1

Hypercube [36] 87.6 ± 2.2 85.0 ± 2.1 91.1 ± 1.4

CFK [10] 86.8 ± 2.7 85.8 ± 2.3 91.2 ± 1.4

AlexNet-RNN [8] 89.7 ± 1.7 - -

Fus-CNN [13] 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4

Fusion 2D/3D CNNs [38] 89.0 ± 2.1 78.4 ± 2.4 91.8 ± 0.9

STEM-CaRFs [1] 88.8 ± 2.0 80.8 ± 2.1 92.2 ± 1.3

This work 89.9 ± 1.6 84.0 ± 1.8 92.5 ± 1.2

5 Conclusion

We have presented a reliable deep feature learning approach using a pre-trained
CNN model together with multiple-fixed RNNs to provide more accurate classi-
fication performance for RGB-D object recognition. The incorporation of RNNs
with the CNN model allows us to deal with high-dimensional features and ag-
gregate information at different layers to further leverage accuracy performance.
In order to utilize the CNN models trained on large-scale RGB datasets for
depth data, we colorize depth images by computing surface normals from depth
maps and treat each dimension of normals as a color channel. We provide ex-
tensive experimental analysis of various parameters and comparative results on
the popular Washington RGB-D Object dataset. The proposed approach pro-
duces promising performances both in terms of reduced feature dimension and
high classification accuracy. There is a great potential for further improvement
of the proposed approach. One potential factor that was not investigated here is
fine-tuning the CNN before integrating the RNNs. Specifically, domain-specific
fine-tuning might be effective for depth modality. Also, noting that the VGG-f
is used as the underlying pre-trained CNN model in our approach, employing
other models such as ResNet [19], DenseNet [20], etc. would be a possible future
research direction to further improve accuracy performance. Training RNNs is
another potential route for further improvement. Lastly, other depth coloriza-
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Fig. 5. Per-category success performances of our approach on the Washington RGB-D
Object dataset.

tion methods and effective feature fusion techniques could also be studied in the
future.
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