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Abstract. Graph convolutional networks are a new promising learning
approach to deal with data on irregular domains. They are predestined
to overcome certain limitations of conventional grid-based architectures
and will enable efficient handling of point clouds or related graphical
data representations, e.g. superpixel graphs. Learning feature extractors
and classifiers on 3D point clouds is still an underdeveloped area and has
potential restrictions to equal graph topologies. In this work, we derive a
new architectural design that combines rotationally and topologically in-
variant graph diffusion operators and node-wise feature learning through
1× 1 convolutions. By combining multiple isotropic diffusion operations
based on the Laplace-Beltrami operator, we can learn an optimal linear
combination of diffusion kernels for effective feature propagation across
nodes on an irregular graph. We validated our approach for learning point
descriptors as well as semantic classification on real 3D point clouds of
human poses and demonstrate an improvement from 85% to 95% in Dice
overlap with our multi-kernel approach.

Keywords: graph convolutional networks · point descriptor learning ·

point cloud segmentation

1 Introduction

The vast majority of image acquisition and analysis has so far focused on re-
constructing and processing dense images or volumetric data. This is mainly
motivated by the simplicity of representing data points and their spatial re-
lationships on regular grids and storing or visualising them using arrays. In
particular convolutional operators for feature extraction and pooling have seen
increased importance for denoising, segmentation, registration and detection due
to the rise of deep learning techniques. Learning spatial filter coefficients through
backpropagation is well understood and computationally efficient due to highly
optimised matrix multiplication routines for both CPUs and GPUs.

However, many alternative imaging devices such as time-of-flight based 3D
scanners or ultrasound that is based on reflectance measurements are not nec-
essarily optimally represented on dense 3D grids. Instead these sparse measure-
ments can be stored and processed more naturally and effectively using point
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clouds that are connected by edges forming an irregular graph. Moreover, 3D
data from multiple sources can be easily combined if represented as point clouds.

The supervised feature learning and further analyses on these irregular do-
mains is a research area that is still in its early stage, in particular in the context
of deep learning. The main limitations of previous approaches are their depen-
dency on an equal number of nodes in all graphs (e.g. derived from point clouds)
and the same topology, i.e. ordering of nodes and edge connections. Furthermore,
some operations on irregular graphs are inefficient for parallel hardware, which
limits their usefulness in real world scenarios.

1.1 Related Work

Of all hierarchical feature learning models, convolutional neural networks have
shown to be one of the most successful approaches for a wide variety of tasks [24].
Attempts to transfer the concepts from the two dimensional image domain di-
rectly to a sparsely sampled 3D space include e.g. volumetric CNNs [19] and
multi-view CNNs [27]. However, due to the sparseness of the observed space
both techniques lack computational efficiency.

Another class of works addresses this problem more generally by studying
the intrinsic structure of data on non-Euclidean and irregular domains. Notewor-
thy are in particular spectral descriptors that are based on the eigenfunctions
and eigenvalues of the Laplace-Beltrami operator. The proposed methods in-
clude heat kernel signatures (HKS) [28], wave kernel signatures (WKS) [2] and
learnable optimal spectral descriptors (OSD) [17]. Spectral CNNs, defined on
graphs, were first introduced in [7]. The main drawback of this method is that
it relies on prior knowledge of the graph structure to define a local neighbor-
hood for weight sharing. Consequently, the idea of graph convolutions has been
extended in [11, 14] by limiting the support size of the learned spectral filters,
making them independent of graph topology. In [18, 5, 20] another approach is
presented, which defines a new form of local intrinsic patches on point clouds
and general graphs, where the weights parameterizing the construction of patches
are learned. Graph attention networks [29] learn a functional mapping to define
pairwise weights based on the concatenated features of the involved nodes. The
localized spectral CNN (LSCNN) [4], which derives local patches from the win-
dowed Fourier transform, can be seen as a combination of the spectral and the
spatial method. [6] provides a comprehensive review of current research on this
topic.

Deep learning applied directly on unordered point sets is considered in the
PointNet framework [22, 23]. The input point set is recursively partitioned into
smaller subsets and max pooling is used as a symmetric function to aggregate
information regardless of point ordering.

Closest to our approach is the work of [1], that uses a power series of the
transition matrix on a graph as diffusion operation to capture local node behav-
ior, while we additionally employ multiple diffusion constants to build the filter
kernels based on different variants of the normalized Laplacian. Moreover, we
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found it critically to build our network in a multi-layer fashion which was not
considered in [1].

1.2 Contribution

In this work, we propose a simplified architecture that helps to overcome the lim-
itations stated above, i.e. it can be employed for both grid and irregular graphs,
has a comparable or better computational performance than classic CNNs and
is theoretically connected to research on mean field inference approaches for
graphical models in computer vision. As detailed in Section 2, we propose multi-
kernel diffusion convolutional neural networks (mkdCNNs) based on two simple
building blocks: isotropic, rotationally-invariant graph diffusion operators that
propagate information across edges (on the graph) and trainable 1×1 convo-
lutions that manipulate features for each node individually. When employing
multiple diffusion constants for the information propagation, which are linearly
combined with the following 1×1 convolution, powerful regional features, e.g.
curvature, can be learned. A random walk approach is considered to further
simplify the diffusion process. In Section 3 we successfully validate the proposed
multi-kernel diffusion convolutional network on the tasks of learning pointwise
correspondences between point clouds of different human poses as well as seg-
menting body parts.

2 Multi-Kernel Diffusion CNNs for Point Clouds

Input Feature
Graph

mkdCNN Layer mkdCNN Layer Output Graph

Fig. 1. Example of a two layer multi-kernel Diffusion CNN for node classification: Given
an arbitrary input graph with f -dimensional features (left), we employ alternating
layers of topology-independent diffusion operators with multiple isotropic kernels that
propagate information across the graph, followed by 1×1 convolutions and activations
that act on nodes individually and learn abstract representations of features (middle).
In the end class predictions for each node a determined by a final 1 × 1 convolution
(right).

Input to our network is a matrix P ∈ R
n×f , where the i-th row corresponds to

one of n points pi ∈ R
f of a point cloud in an f -dimensional feature space.
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2.1 Network Architecture

Figure 1 visualizes our proposed mkdCNN composed of the building blocks de-
scribed below in detail. The layer input is a feature map defined on a graph. The
weighted edges of the graph determine the feature propagation between nodes
implemented as diffusion operation. The feature learning step consists of 1 × 1
convolutions followed by non-linear activations. Therefore, its support is limited
to each individual node. Stacked mkdCNN layers can be used in networks for
global classification, with a final symmetric pooling function (e.g. max or av-
erage pooling), or for semantic node-wise segmentation in a fully convolutional
manner.

2.2 Input Feature Graph

The simplest way to capture and represent local geometry in a point cloud
is via a k-nearest neighbor graph Gk, where Nk(pi) denotes the set of the k-
nearest neighbors of a point pi and edge weights are defined by a distance metric
distij between two points pi and pj . An adjacency matrix A for the graph is
constructed with entries

aij =

{

exp(−dist2ij)

2·σ2 , if pj ∈ Nk(pi)

0, otherwise
,

where σ denotes a scalar diffusion coefficient. In our work we employ multi-
ple diffusion constants yielding different weighting schemes for the same graph.
Spectral graph analysis [9] allows us to extract further geometric properties from
the point cloud, e.g. an intrinsic order of points, via the symmetric normalized
graph Laplacian Lsym = I−D−1/2AD−1/2. I denotes the identity matrix. The
degree Matrix D is solely defined by its diagonal elements dii =

∑

j aij . For
large point clouds it may be necessary to approximate the highly sparse matrix
Lsym to maintain the computational efficiency of deep networks on GPUs. For
this purpose, we can perform an eigendecomposition using only the first m ≪ n

eigenvalues, such that
Lsym = QΛQ⊺,

where the diagonal matrix Λ holds the m eigenvalues and Q the corresponding
eigenvectors. An alternative to the symmetric Laplacian is the random walk
normalized Laplacian Lrw = I−D−1A.

Input point features can be arbitrarily defined depending on the application
and additional given information. For graphs derived from or based on regular
grids like 2D images and 3D volumes such features may be simple grayscale
values/patches or more suitable approaches, e.g. extraction of BRIEF descrip-
tors [8]. Real world coordinates and surface normals can be extracted from 3D
point clouds from stereo vision or time-of-flight systems. Once a graph is de-
fined, the spectrum of the Laplacian itself can be used for feature extraction,
e.g. B-spline based geometry vectors [17]. Furthermore, the construction of the
mkdCNN makes it possible to learn meaningful information with no input fea-
tures at all. In this case point features are simply initialized with ones.
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2.3 mkdCNN Layer

Each of our proposed mkdCNN layers consists of two seperated steps: the diffu-
sion operation and the feature learning.

To propagate features across the graph the Laplacian is used, thus making
the propagation step for features independent of employed graph topologies and
applicable to graph datasets with varying numbers of nodes. Essential to our
mkdCNN layer is the use of multiple isotropic diffusion kernels as visualized
in Figure 2. Together with the following node-wise feature learning, expressive
regional features with different local support can be extracted from the non-
linear combination of all kernels. The diffused point cloud values P′ can be
computed as the solution of the diffusion process

P′ = (λLsym + I)−1P,

where λ denotes the diffusion time [10]. Approximating Lsym with few eigenvec-
tors as mentioned above yields an efficient computation, as

P′ = Q(λΛ+ I)−1Q⊺P.

Therefore, diffusion is mainly affected by the parameters k, σ and λ, that give
control over the locality of the feature propagation. As our network can be
trained in an end-to-end manner those parameters can either be learned or de-
termined on a holdout validation set. As an alternative diffusion operation, that
does not involve the costly matrix inversion, we also considered a random walker,
such that

P′ = (I− Lrw)
tP.

In this case the diffusion parameters are k, σ and the number of diffusion steps
t. Parallels to conditional random fields (CRFs) can be drawn. Our diffusion
operation corresponds to one message passing step with the difference that the
approximate mean and variance of features are propagated instead of an exact
inference of all variables as in CRFs. In [16] a similar approach for efficient
and approximate inference on grid-graphs is proposed that involves convolving
a downsampled set of message variables with truncated Gaussian kernels.

In our proposed network, features are solely learned through 1× 1 convolu-
tions followed by a non-linearity. Besides adding depth to the network this choice
is based on the analogy of our design with CRFs, where a label compatibility
function is learned to penalize the assignment of different labels to nodes with
similar properties [16]. Note that in CRFs the dimensionality of signals residing
on each node is limited to the number of output labels and thus the compati-
bility function is restricted to only learn interactions across few classes, whereas
in our approach the compatibility is established between feature maps. Further-
more, the exclusive use of 1 × 1 convolutions would make it conceptually easy
to incorporate well studied building blocks from recent deep learning literature
such as dense or residual connections into our network. Instance normalization
and dropout are used to stabilize training and we employ a block of two 1 × 1
kernels each.
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Fig. 2. Visualization of multiple isotropic diffusion kernels (for one point on the chest
of a subject) employed in a single feature propagation step of our mkdCNN Layer.

3 Experiments

Our new method is evaluated in two experiments: point descriptor learning
and semantic body parts segmentation. We make use of the publicly available
FAUST dataset [3], which consists of 100 surface meshes of 10 different subjects,
each scanned in 10 different poses. The 3D meshes have a resolution of 6890
vertices and point-wise correspondences between the shapes have been semi-
automatically established for all points. As we are only interested in the scanned
point clouds, we do not consider the given triangulations in our experiments.
Following [4] we split the dataset in a disjoint training (subjects 1-7, 70 shapes),
validation (subject 8, 10 shapes) and test set (subjects 9-10, 20 shapes).

3.1 Point Descriptor Learning

The random walk normalized Laplacian for all point clouds was computed using
k = 100 nearest neighbors. We employed a four layer mkdCNN using the random
walk diffusion operation with parameters σ = {0.0125, 0.025, 0.05, 0.1, 0.125, 0.25,
0.5, 1}, t = 7 and a constant signal of ones as features on the input graph. All
parameters were chosen according to automatic hyperparameter optimization on
the validation set. To train the descriptors we used a triplet hinge loss function
- i.e. given a point on a randomly sampled shape its normalized Euclidean dis-
tance in the descriptor space to a non-corresponding point (on another random
sampled shape) should be larger by a margin (here empirically set to 0.2) than
its distance to a corresponding point (on another randomly sampled shape). The
descriptor dimension was set to 16. Training was performed for 50 epochs with
the Adam optimizer [13] and an initial learning rate of 10−4. For each opti-
mization step we considered 6890 triplets. We implemented our architecture in
PyTorch [21] and train a model (0.15 million free parameters) on a Nvidia GTX
1070 8GB in around five hours. At test time the extraction of all 6890 descriptors
for one shapes takes approximately 5 seconds. This time is dominated by the
computation of the diffusion operation. Given precomputed diffusion operators
our system is able to produce a throughput of 100k points per second.
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Fig. 3. Visualization of distances in the descriptor space between all points on a se-
lection of shapes from the FAUST test set and a single point on a reference shape
(upper left). Cold colors correspond to small distances. Distances are saturated at the
median.
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Fig. 4. Comparison of descriptor performances on the FAUST test set. For four com-
parison methods and our approach we report the cumulative match character-
istic (CMC), receiver operating characteristic (ROC) and the correspondence quality,
which measures the distance between matched and ground truth points on the under-
lying mesh of the point cloud.

We compare the mkdCNN to four other spectral descriptor approaches,
namely HKS [28], WKS [2], OSD [17] and LSCNN [4]. Publicly available im-
plementations of the approaches were used and parameters (e.g. k for the com-
putation of the graph Laplacian) optimized on the validation set.

Results Figure 4 shows different evaluation results for all approaches on the
FAUST test set. First, the cumulative match characteristic (CMC) is shown. It
evaluates the retrieval performance by testing if the correct corresponding point
on one shape can be found inside the next k-nearest neighbors from the set of all
points of another shape. The k-nearest neighbors are determined by Euclidean
distances in the descriptor space and the mean over all points and over all shapes
is reported. The hit rate @kNN = 10 improved from 0.29 (HKS), 0.35 (WKS),
0.41 (OSD) and 0.52 (LSCNN) to 0.73 (mkdCNN). The receiver operating char-
acteristic (ROC) plots the true positive rate against the false positive rate of
point pairs at several distance thresholds in the descriptor space. For a better
distinction between the approaches, we plot the ROC curve in semilogarithmic
scale. The measurements for the correspondence quality follow [12]. The ground
truth meshes are used to compute the geodesic distances between all points on a
shape and the percentage of point pair matches that are at most r-geodesically
apart from their corresponding ground truth points are reported. For the mkd-
CNN this means that over 80% of point matches have a geodesic distance to
their ground truth points of 10 cm or less.

Figure 3 visualizes qualitative results of descriptors learned with the mkd-
CNN. A point is selected on a reference shape (on the right hand and left shoul-
der, respectively) and its distance in the descriptor space to all other points on
the same and other shapes of the test set is computed. The distances are color-
coded, where cold colors correspond to small distances. For most of the shapes
distinct peaks around the ground truth are observable.
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3.2 Semantic Body Parts Segmentation

The FAUST dataset does not include point-wise semantic labels for human body
parts. Therefore, we labeled the points manually on a reference shape and trans-
fered the labels to all other shapes via the known point correspondences. An
exemplary ground truth labeling can be seen in Figure 7 (left). The 15 labels
correspond to the head, thorax, abdomen, left hand, left lower arm, left upper
arm, left foot, left lower leg, left upper leg, right hand, right lower arm, right
upper arm, right foot, right lower leg and right upper leg. The semantic seg-
mentation on the FAUST dataset was also investigated in [15], but only up to
intrinsic symmetry (e.g. no distinction between right and left foot).

The default mkdCNN configuration for the semantic body parts segmentation
is the same as for the descriptor learning task: the random walk normalized
Laplacian is computed with k = 100 nearest neighbors; we use the random walk
diffusion operation with diffusion parameters σ = {0.0125, 0.025, 0.05, 0.1, 0.125,
0.25, 0.5, 1} and t = 7; a constant signal of ones as features are used on the
input graph. For the classification task another 1 × 1 convolution is employed
after the fourth mkdCNN layer producing softmax scores. The model is trained
with a cross-entropy loss weighted with the root of inverse label frequencies and
the Adam optimizer (initial learning rate: 10−4). Training is stopped after 50
epochs.

General Results Figure 5 depicts segmentation results for a selection of point
clouds from the FAUST test set. The mkdCNN produces accurate and precise
point cloud labels, even for challenging poses (fourth column: touching hands,
fifth column: right foot touches left knee). A Dice overlap of 0.95±0.04 (averaged
over all labels and all shapes of the test set) confirms the good visual impression.

Ablation study results To understand the effect of different parameter and
architectural choices in the mkdCNN, we perform several ablation experiments
on the segmentation task. The default configuration for all experiments is the
one described above. Using the exact diffusion process instead of the random
walk approach yields a slightly improved Dice (0.96± 0.03 vs 0.95± 0.04) at the
cost of a much higher inference time (approximately 20 s and 5.5 s, respectively)
due to the costly matrix inversion. Further evaluation results are shown as box-
plots of Dice coefficients in Figure 6 (top row). In our first ablation experiment
we study the effect of different number of diffusion kernels, i.e. the number of
employed weighting schemes for the diffusion operation, on the segmentation re-
sults. Increasing the number of different σ values from one to eight (and thus also
increasing the total number of trainable weights of subsequent 1× 1 convolution
layers from 40k to 150k) improves the mean Dice from 0.85±0.11 to 0.95±0.04.
Particular interesting is the decreased standard deviation which implies a gain
in robustness with respect to the variability between shapes. For the second ex-
periment the number of mkdCNN Layers was set to 1, 2, 4 and 8, respectively.
With an increased number of layers the size of the feature maps was reduced in
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Fig. 5. Visualization of segmentation results on a selection of shapes from the FAUST
test set. While the segmentation is visually convincing for most 3D point clouds, small
inconsistencies can be observed. On the third shape in the top row points of the right
lower arm , right upper arm , left lower arm and left upper arm are not
always assigned to the correct side of the body. The same applies for points of the right
upper leg and left upper leg on the fourth shape in the top row.
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order to keep the number of free parameters approximately the same for each
configuration. Thus, the performance gain is introduced through a deeper mkd-
CNN architecture and not attributed to an increased capacity of the network.
A difference in Dice overlap is especially recognizable between a one-layer and
a two-layer mkdCNN. Another parameter that is not directly connected to the
mkdCNN architecture but has a notable effect on the segmentation outcome is
the number of nearest neighbors k for the creation of the graph Laplacian from a
given point cloud. For the mkdCNN it seems to be an advantage to be build on
top of a graph with many locally highly interconnected nodes. The mean Dice
coefficient increases from 0.88± 0.04 (k = 5) to 0.95± 0.04 (k = 100).

Fig. 7. Examples of our different data disturbance experiments. In this Figure Gaussian
noise with a standard deviation of 0.03 is added to the ground truth points. The ratio
for missing data points as well as added outliers is 0.3.

Robustness tests results A desirable property of a point cloud processing
network is robustness against any disturbances of the input data. In a number
of experiments we investigate the effect of different data disturbances on the
segmentation results. Network parameters were not adapted for the robustness
experiments. Figure 7 depicts the impact of the studied point perturbations
on an exemplary ground truth point cloud. Robustness against noise is tested
with random Gaussian noise added to the input cloud. We employ different
standard deviations for the Gaussian (std = {0.01, 0.02, 0.03, 0.04, 0.05}). With
a std of 0.02 the mean Dice coefficient is still approximately at 0.90. The results
deteriorates with a std of 0.03 but Figure 7 shows that the noise is already at
a very high level and unresolvable ambiguities exists in this synthetic ground
truth. In the next experiment we remove points at random with a certain ratio.
Even if every second point is removed the mkdCNN produces segmentations
with a mean Dice of 0.75 without the need of adapting the network parameters.
To investigate how the network can cope with outliers we randomly add points
within the shapes bounding box. Added points are labeled as background. The
results show that the segmentation task has become more difficult with the
additional background class but is very robust against the ratio of outliers. Even
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for an outlier ratio of 0.5, i.e. half of all points belong to the background class,
the Dice overlap is above 0.80. Figure 6 (bottom row) summarizes the results of
all data disturbance experiments.

4 Discussion

Overall the results for both tasks are very promising and demonstrate a substan-
tial improvement over both hand-crafted spectral features and graph convolution
approaches. Especially the proposed use of multiple kernels and the consistent
employment of mkdCNN layers in a multi-layer fashion helped to decrease error
rates for Dice coefficients (i.e. 1−Dice) in our investigated segmentation task
by 66% when using eight instead of a single diffusion kernel and by 52% when
increasing the depth from one to four layers. This is a significant improvement
to the simple diffusion CNN in the work of [1], which is related to our mkdCNN
in a configuration with only one kernel and a single layer. Despite using only
topology-invariant and isotropic kernels, the learned non-linear combination in
our proposed multi-kernel network help to create expressive and highly discrim-
inative filters that enable accurate graph node classification.

When visually inspecting the point descriptor similarity in Figure 3 it ap-
pears that the learned 16-dimensional feature vectors do not differentiate well
between symmetric structures (e.g. left and right shoulder). However, the seman-
tic labeling tasks demonstrated that the subtle global differences in the human
pose are sufficient to correctly label and distinguish between the right and left
half of the body. For some rare cases the evident errors are indeed the inconsis-
tent assignment of points to the correct side of the body (see Figure 5 top row,
third and fourth column).

5 Conclusion

We have presented a new, simple architecture for descriptor learning and se-
mantic segmentation on point clouds. By decoupling the graph propagation and
feature learning step the mkdCNN overcomes the limitations of topology depen-
dent approaches. Using the Laplacian and its approximation enables an efficient
implementation of the diffusion of feature maps defined on sparse nodes that is
transferable to different graphs and we showed that by providing multiple dif-
ferent kernels stronger features can be learned in each subsequent Layer. For the
task of descriptor learning on point clouds from the FAUST dataset the mkd-
CNN (without any input features) shows better performance than a number of
other spectral descriptors and learning approaches. Experiments on manually
labeled body parts on the point clouds demonstrate the general feasibility of
our approach for the task of semantic segmentation, even for highly noisy in-
put (Gaussian noise, missing points, outliers). We validated several choices for
our network architecture in ablation experiments and showed that a multi-layer
mkdCNN with a high number of diffusion kernels build on top of a locally highly
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interconnected graph gives the best segmentation results in terms of Dice over-
lap. Visual inspection of the segmented point clouds expose rare failure cases
due to ambiguities in the symmetry of the human body.

6 Outlook

Our mkdCNN framework provides some straightforward potential extensions for
further improvements while maintaining its general design and inherent compu-
tational efficiency. Until now, we did not consider signals on our input point
cloud but features like fast point feature histograms (FPFH) [25], RGB values
(acquired with real-world 3D scanners like the Kinect) or spectral features can
potentially increase the networks performance.

In this work we investigated the feasibility of the mkdCNN for learning on
point clouds. As the diffusion operation is based on the graph Laplacian the
network can be easily employed for general graphs. Testing our approach on
graph datasets like Cora or PubMed [26] may yield interesting new insights.

An interesting research direction in general is to enable the possibility to not
only learn features of a graph but also the connections (edge weights) between
nodes and therefore incorporate mkdCNN into graph attention approaches [29].
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