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Abstract. While an increasing interest in deep models for single-image
depth estimation (SIDE) can be observed, established schemes for their
evaluation are still limited. We propose a set of novel quality criteria,
allowing for a more detailed analysis by focusing on specific characteristics
of depth maps. In particular, we address the preservation of edges and
planar regions, depth consistency, and absolute distance accuracy. In
order to employ these metrics to evaluate and compare state-of-the-art
SIDE approaches, we provide a new high-quality RGB-D dataset. We
used a digital single-lens reflex (DSLR) camera together with a laser
scanner to acquire high-resolution images and highly accurate depth
maps. Experimental results show the validity of our proposed evaluation
protocol.
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1 Introduction

With the emergence of deep learning methods within the recent years and
their massive influence on the computer vision domain, the problem of SIDE
got addressed as well by many authors. These methods are in high demand
for manifold scene understanding applications like, for instance, autonomous
driving, robot navigation, or augmented reality systems. In order to replace or
enhance traditional methods, convolutional neural network (CNN) architectures
have been most commonly used and successfully shown to be able to infer
geometrical information solely from presented monocular RGB or intensity images,
as exemplary shown in Fig. 1.

While these methods produce nicely intuitive results, proper evaluating the
estimated depth maps is crucial for subsequent applications, e.g., their suitability
for further 3D understanding scenarios [30]. Consistent and reliable relative depth
estimates are, for instance, a key requirement for path planning approaches in
robotics, augmented reality applications, or computational cinematography.

Nevertheless, the evaluation schemes and error metrics commonly used so
far mainly consider the overall accuracy by reporting global statistics of depth
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(a) RGB image (b) Depth map (c) Prediction (d) Prediction detail

Fig. 1: Sample image pair from our dataset and depth prediction using a state-of-
the-art algorithm [7]. Although the quality of the depth map seems reasonable,
the prediction suffers from artifacts, smoothing, missing objects, and inaccuracies
in textured image regions

residuals which does not give insight into the depth estimation quality at salient
and important regions, like planar surfaces or geometric discontinuities. Hence,
fairly reasonable reconstruction results, as shown in Fig. 1c, are probably positively
evaluated, while still showing evident defects around edges. At the same time, the
shortage of available datasets providing ground truth data of sufficient quality
and quantity impedes precise evaluation.

As these issues were reported by the authors of recent SIDE papers [19,12],
we aim at providing a new and extended evaluation scheme in order to overcome
these deficiencies. In particular, as our main contributions, we

i) present a new evaluation dataset acquired from diverse indoor scenarios
containing high-resolution RGB images aside highly accurate depth maps from
laser scans4, ii) introduce a set of new interpretable error metrics targeting the
aforementioned issues, and iii) evaluate a variety of state-of-the-art methods
using these data and performance measures.

2 Related Work

In this section, we introduce some of the most recent learning-based methods
for predicting depth from a single image and review existing datasets used for
training and evaluating the accuracy of these methods.

2.1 Methods

Most commonly, stereo reconstruction is performed from multi-view setups, e.g.,
by triangulation of 3D points from corresponding 2D image points observed by
distinct cameras (cf.multi-view stereo (MVS) or structure from motion (SfM)
methods) [27]. Nevertheless, for already many decades, estimating depth or shape
from monocular setups or single views is under scientific consideration [2] in
psychovisual as well as computational research domains. After several RGB-
D datasets were released [11,25,28,4,5], data-driven learning-based approaches

4 This dataset is freely available at www.lmf.bgu.tum.de/ibims1.

www.lmf.bgu.tum.de/ibims1
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outperformed established model-based methods. Especially deep learning-based
methods have proven to be highly effective for this task and achieved current
state-of-the-art results [3,7,15,10,13,18,22,31,24,32,21,16,9,20,33,17]. One of the
first approaches using CNNs for regressing dense depth maps was presented by
Eigen et al. [8] who employ two deep networks for first performing a coarse global
prediction and refine the predictions locally afterwards. An extension to this
approach uses deeper models and additionally predicts normals and semantic
labels [7]. Liu et al. [22] combine CNNs and conditional random fields (CRFs) in
a unified framework while making use of superpixels for preserving sharp edges.
Laina et al. [15] tackle this problem with a fully convolutional network consisting
of a feature map up-sampling within the network. While Li et al. [17] employ
a novel set loss and a two-streamed CNN that fuses predictions of depth and
depth gradients, Xu et al. [32] propose to integrate complementary information
derived from multiple CNN side outputs using CRFs.

2.2 Existing Benchmark Datasets

In order to evaluate SIDE methods, any dataset containing corresponding RGB
and depth images can be considered, which also comprises benchmarks originally
designed for the evaluation of MVS approaches. Strecha et al. [29] propose a
MVS benchmark providing overlapping images with camera poses for six different
outdoor scenes and a ground truth point cloud obtained by a laser scanner. More
recently, two MVS benchmarks, the ETH3D [26] and the Tanks & Temples [14]
datasets, have been released. Although these MVS benchmarks contain high
resolution images and accurate ground truth data obtained from a laser scanner,
the setup is not designed for SIDE methods. Usually, a scene is scanned from
multiple aligned laser scans and images acquired in a sequential matter. However,
it cannot be guaranteed that the corresponding depth maps are dense. Occlusions
in the images result in gaps in the depth maps especially at object boundaries
which are, however, a key aspect of our metrics. Despite the possibility of acquiring
a large number of image pairs, they mostly comprise only a limited scene variety
and are highly redundant due high visual overlap. Currently, SIDE methods are
tested on mainly three different datasets. Make3D [25], as one example, contains
534 outdoor images and aligned depth maps acquired from a custom-built 3D
scanner, but suffers from a very low resolution of the depth maps and a rather
limited scene variety. The Kitti dataset [11] contains street scenes captured
out of a moving car. The dataset contains RGB images together with depth
maps from a Velodyne laser scanner. However, depth maps are only provided
in a very low resolution which furthermore suffer from irregularly and sparsely
spaced points. The most frequently used dataset is the NYU depth v2 dataset
[28] containing 464 indoor scenes with aligned RGB and depth images from video
sequences obtained from a Microsoft Kinect v1 sensor. A subset of this dataset is
mostly used for training deep networks, while another 654 image and depth pairs
serve for evaluation. This large number of image pairs and the various indoor
scenarios facilitated the fast progress of SIDE methods. However, active RGB-D
sensors, like the Kinect, suffer from a short operational range, occlusions, gaps,
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and erroneous specular surfaces. The recently released Matterport3D [4] dataset
provides an even larger amount of indoor scenes collected from a custom-built 3D
scanner consisting of three RGB-D cameras. This dataset is a valuable addition to
the NYU-v2 but also suffers from the same weaknesses of active RGB-D sensors.

3 Error Metrics

This section describes established metrics and our new proposed ones allowing
for a more detailed analysis.

3.1 Commonly Used Error Metrics

Established error metrics consider global statistics between a predicted depth
map Y and its ground truth depth image Y ∗ with T depth pixels. Beside visual
inspections of depth maps or projected 3D point clouds, the following error
metrics are exclusively used in all relevant recent publications [8,7,15,19,32]:
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Even though these statistics are good indicators for the general quality of predicted
depth maps, they could be delusive. Particularly, the standard metrics are not able
to directly assess the planarity of planar surfaces or the correctness of estimated
plane orientations. Furthermore, it is of high relevance that depth discontinuities
are precisely located, which is not reflected by the standard metrics.

3.2 Proposed Error Metrics

In order to allow for a more meaningful analysis of predicted depth maps and
a more complete comparison of different algorithms, we present a set of new
quality measures that specify on different characteristics of depth maps which
are crucial for many applications. These are meant to be used in addition to the
traditional error metrics introduced in Section 3.1. When talking about depth
maps, the following questions arise that should be addressed by our new metrics:
How is the quality of predicted depth maps for different absolute scene depths?
Can planar surfaces be reconstructed correctly? Can all depth discontinuities be
represented? How accurately are they localized? Are depth estimates consistent
over the whole image area?
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Fig. 2: Visualizations of the proposed error metrics for planarity errors (a and b)
and depth boundary errors (c and d)

Distance-Related Assessment Established global statistics are calculated
over the full range of depth comprised by the image and therefore do not
consider different accuracies for specific absolute scene ranges. Hence, applying
the standard metrics for specific range intervals by discretizing existing depth
ranges into discrete bins (e.g., one-meter depth slices) allows investigating the
performance of predicted depths for close and far ranged objects independently.

Planarity Man-made objects, in particular, can often be characterized by planar
structures like walls, floors, ceilings, openings, and diverse types of furniture.
However, global statistics do not directly give information about the shape
correctness of objects within the scene. Predicting depths for planar objects
is challenging for many reasons. Primarily, these objects tend to lack texture
and only differ by smooth color gradients in the image, from which it is hard
to estimate the correct orientation of a 3D plane with three-degrees-of-freedom.
In the presence of textured planar surfaces, it is even more challenging for a
SIDE approach to distinguish between a real depth discontinuity and a textured
planar surface, e.g., a painting on a wall. As most methods are trained on large
indoor scenes, like NYU-v2, a correct representation of planar structures is an
important task for SIDE, but can hardly be evaluated using established standard
metrics. For this reason, we propose to use a set of annotated images defining
various planar surfaces (walls, table tops and floors) and evaluate the flatness and
orientation of predicted 3D planes πk = (ηk, ok) compared to ground truth 3D
planes π∗

k = (η∗
k, o

∗
k). Each plane is specified by a normal vector η and an offset

to the plane o. In particular, a masked depth map Y k of a particular planar
surface is projected to 3D points P k;i,j where 3D planes πk are robustly fitted
to both the ground truth and predicted 3D point clouds P∗

k =
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}
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and

Pk = {P k;i,j}i,j , respectively. The planarity error
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is then quantified by the standard deviation of the averaged distances d between
the predicted 3D point cloud and its corresponding 3D plane estimate. The
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orientation error

εoriePE (Y k) = acos
(

η⊤k · η∗
k

)

(2)

is defined as the 3D angle difference between the normal vectors of predicted
and ground truth 3D planes. Figs. 2a and 2b illustrate the proposed planarity
errors. Note that the predicted depth maps are scaled w.r.t. the ground truth
depth map, in order to eliminate scaling differences of compared methods.

Location Accuracy of Depth Boundaries Beside planar surfaces, captured
scenes, especially indoor scenes, cover a large variety of scene depths caused by
any object in the scene. Depth discontinuities between two objects are represented
as strong gradient changes in the depth maps. In this context, it is important
to examine whether predicted depths maps are able to represent all relevant
depth discontinuities in an accurate way or if they even create fictitious depth
discontinuities confused by texture. An analysis of depth discontinuities can
be best expressed by detecting and comparing edges in predicted and ground
truth depth maps. Location accuracy and sharp edges are of high importance for
generating a set of ground truth depth transitions which cannot be guaranteed
by existing datasets acquired from RGB-D sensors. Ground truth edges are
extracted from our dataset by first generating a set of tentative edge hypotheses
using structured edges [6] and then manually selecting important and distinct
edges subsequently. In order to evaluate predicted depth maps, edges Y bin are
extracted using structured edges and compared to the ground truth edges Y ∗

bin via
truncated chamfer distance of the binary edge images. Specifically, an Euclidean
distance transform is applied to the ground truth edge image E∗ = DT (Y ∗

bin),
while distances exceeding a given threshold θ (θ = 10px in our experiments) are
ignored in order to evaluate predicted edges only in the local neighborhood of
the ground truth edges. We define the depth boundary errors (DBEs), comprised
of an accuracy measure

εaccDBE(Y ) =
1

∑

i

∑

j ybin;i,j

∑

i

∑

j

e∗i,j · ybin;i,j (3)

by multiplying the predicted binary edge map with the distance map and a
subsequent accumulation of the pixel distances towards the ground truth edge.
As this measure does not consider any missing edges in the predicted depth
image, we also define a completeness error

εcomp
DBE (Y ) =

1
∑
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∑

j y
∗
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∑

i

∑

j

ei,j · y
∗
bin;i,j (4)

by accumulating the ground truth edges multiplied with the distance image of the
predicted edges E = DT (Y bin). A visual explanation of the DBEs are illustrated
in Figs. 2c and 2d.
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Directed Depth Error For many applications, it is of high interest that depth
images are consistent over the whole image area. Although the absolute depth
error and squared depth error give information about the correctness between
predicted and ground truth depths, they do not provide information if the
predicted depth is estimated too short or too far. For this purpose, we define the
directed depth errors (DDEs)

ε+DDE (Y ) =

∣

∣

{
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as the proportions of too far and too close predicted depth pixels ε+DDE and ε−DDE.
In practice, a reference depth plane π is defined at a certain distance (e.g., at
3m, cf.Fig. 7c) and all predicted depths pixels which lie in front and behind this
plane are masked and assessed according to their correctness using the reference
depth images.

4 Dataset

As described in the previous sections, our proposed metrics require extended
ground truth which is not yet available in standard datasets. Hence, we compiled
a new dataset according to these specifications.

4.1 Acquisition

For creating such a reference dataset, high-quality optical RGB images and
depth maps had to be acquired. Practical considerations included the choice of
suitable instruments for the acquisition of both parts. Furthermore, a protocol
to calibrate both instruments, such that image and depth map align with each
other, had to be developed. An exhaustive analysis and comparison of different
sensors considered for the data acquisition was conducted, which clearly showed
the advantages of using a laser scanner and a DSLR camera compared to active
sensors like RGB-D cameras or passive stereo camera rigs. We therefore used the
respective setup for the creation of our dataset.

In order to record the ground truth for our dataset, we used a highly accurate
Leica HDS7000 laser scanner, which stands out for high point cloud density and
very low noise level. We acquired the scans with 3mm point spacing and 0.4mm
RMS at 10m distance. As our laser scanner does not provide RGB images along
with the point clouds, an additional camera was used in order to capture optical
imagery. The usage of a reasonably high-quality camera sensor and lens allows
for capturing images in high resolution with only slight distortions and a high
stability regarding the intrinsic parameters. For the experiments, we chose and
calibrated a Nikon D5500 DSLR camera and a Nikon AF-S Nikkor 18–105mm
lens, mechanically fixed to a focal length of approximately 18mm.
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Using our sensor setup, synchronous acquisition of point clouds and RGB
imagery is not possible. In order to acquire depth maps without parallax effects,
the camera was mounted on a custom panoramic tripod head which allows to
freely position the camera along all six degrees of freedom. This setup can be
interchanged with the laser scanner, ensuring coincidence of the optical center of
the camera and the origin of the laser scanner coordinate system after a prior
calibration of the system. It is worth noting, that every single RGB-D image pair
of our dataset was obtained by an individual scan and image capture with the
aforementioned strategy in order to achieve dense depth maps without gaps due
to occlusions.

4.2 Registration and Processing

The acquired images were undistorted using the intrinsic camera parameters
obtained from the calibration process. In order to register the camera towards
the local coordinate system of the laser scanner, we manually selected a sufficient
number of corresponding 2D and 3D points and estimated the camera pose using
EPnP [23]. This registration of the camera relative to the point cloud yielded only
a minor translation, thanks to the pre-calibrated platform. Using this procedure,
we determined the 6D pose of a virtual depth sensor which we use to derive
a matching depth map from the 3D point cloud. In order to obtain a depth
value for each pixel in the image, the images were sampled down to two different
resolutions. We provide a high-quality version with a resolution of 1500× 1000 px
and a cropped NYU-v2-like version with a resolution of 640× 480 px. 3D points
were projected to a virtual sensor with the respective resolution. For each pixel, a
depth value was calculated, representing the depth value of the 3D point with the
shortest distance to the virtual sensor. It is worth highlighting that depth maps
were derived from the 3D point cloud for both versions of the images separately.
Hence, no down-sampling artifacts are introduced for the lower-resolution version.
The depth maps for both, the high-quality and the NYU-v2-like version, are
provided along with the respective images.

4.3 Contents

Following the described procedure, we compiled a dataset, which we henceforth
refer to as the independent Benchmark images and matched scans v1 (iBims-1)
dataset. The dataset is mainly composed of reference data for the direct evaluation
of depth maps, as produced by SIDE methods. As described in the previous
sections, pairs of images and depth maps were acquired and are provided in
two different versions, namely a high-quality version and a NYU-v2-like version.
Example pairs of images and matching depth maps from iBims-1 are shown in
Figs. 1a and 1b and Figs. 3a and 3b, respectively.

Additionally, several manually created masks are provided. Examples for all
types of masks are shown in Fig. 3c, while statistics of the plane annotations
are listed in Table 1. In order to allow for evaluation following the proposed
DBE metric, we provide distinct edges for all images. Edges have been detected
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(a) Camera image (b) Ground truth (c) Masks (d) Distinct edges

Fig. 3: Sample from the main part of the proposed iBims-1 dataset with (a)
RGB image, (b) depth map, (c) several masks with semantic annotations (i.e.,
walls ( ), floor ( ), tables ( ), transparent objects ( ), and invalid pixels ( )),
and (d) distinct edges ( )
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Fig. 4: iBims-1 dataset statistics compared to the NYU-v2 dataset. Distribution
of depth values (a) and scene variety (b)

automatically and manually selected. Fig. 3d shows an example for one of the
scenes from iBims-1.

This main part of the dataset contains 100 RGB-D image pairs in total. So far,
the NYU-v2 dataset is still the most comprehensive and accurate indoor dataset
for training data-demanding deep learning methods. Since this dataset has most
commonly been used for training the considered SIDE methods, iBims-1 is
designed to contain similar scenarios. Our acquired scenarios include various
indoor settings, such as office, lecture, and living rooms, computer labs, a factory
room, as well as more challenging ones, such as long corridors and potted plants.
A comparison regarding the scene variety between NYU-v2 and iBims-1 can be
seen in Fig. 4b. Furthermore, iBims-1 features statistics comparable to NYU-v2,
such as the distribution of depth values, shown in Fig. 4a, and a comparable field
of view.

Additionally, we provide an auxiliary dataset which consists of four parts:
(1) Four outdoor RGB-D image pairs, containing vegetation, buildings, cars and
larger ranges than indoor scenes. (2) Special cases which are expected to mislead
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Table 1: Number and statistics of manually labeled plane masks in iBims-1

Plane Type Images Instances Pixels (for NYUv2 res.)

Floor 47 51 1 163 499
Table 46 54 832 984
Wall 82 140 6 557 108

SIDE methods. These show 85 RGB images of printed samples from the NYU-v2
and the Pattern dataset [1] hung on a wall. Those could potentially give valuable
insights, as they reveal what kind of image features SIDE methods exploit. Fig. 9a
shows examples from both categories. No depth maps are provided for those
images, as the region of interest is supposed to be approximately planar and
depth estimates are, thus, easy to assess qualitatively. (3) 28 different geometrical
and radiometrical augmentations for each image of our core dataset to test the
robustness of SIDE methods. (4) Up to three additional handheld images for
most RGB-D image pairs of our core dataset with viewpoint changes towards
the reference images which allows to validate MVS algorithms with high-quality
ground truth depth maps.

5 Evaluation

In this section, we evaluate the quality of existing SIDE methods using both
established and proposed metrics for our reference test dataset, as well as for
the commonly used NYU-v2 dataset. Furthermore, additional experiments were
conducted to investigate the general behavior of SIDE methods, i.e., the ro-
bustness of predicted depth maps to geometrical and color transformations and
the planarity of textured vertical surfaces. For evaluation, we compared several
state-of-the-art methods, namely those proposed by Eigen and Fergus [8], Eigen
et al. [7], Liu et al. [21], Laina et al. [15], and Li et al. [19]. It is worth mentioning
that all of these methods were solely trained on the NYU-v2 dataset. Therefore,
differences in the results are expected to arise from the developed methodology
rather than the training data.

5.1 Evaluation Using Proposed Metrics

In the following, we report the results of evaluating SIDE methods on both
NYU-v2 and iBims-1 using our newly proposed metrics. Please note, that due
to the page limit, only few graphical results can be displayed in the following
sections.

Distance-Related Assessment The results of evaluation using commonly used
metrics on iBims-1 unveil lower overall scores for our dataset (see Table 2). In
order to get a better understanding of these results, we evaluated the considered
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Fig. 5: Distance-related global errors (left: relative error and right: RMS) for
NYU-v2 (mean: ,±0.5 std: ) and iBims-1 (mean: , ±0.5 std: ) using the
method of Li et al. [19]

methods on specific range intervals, which we set to 1m in our experiments. Fig. 5
shows the error band of the relative and RMS errors of the method proposed by Li
et al. [19] applied to both datasets. The result clearly shows a comparable trend on
both datasets for the shared depth range. This proves our first assumption, that
the overall lower scores originate from the huge differences at depth values beyond
the 10m depth range. On the other hand, the results reveal the generalization
capabilities of the networks, which achieve similar results on images from another
camera with different intrinsics and for different scenarios. It should be noted
that the error bands, which show similar characteristics for different methods
and error metrics, correlate with the depth distributions of the datasets, shown
in Fig. 4a.

Planarity To investigate the quality of reconstructed planar structures, we
evaluated the different methods with the planarity and orientation errors εplanPE

and εoriePE , respectively, as defined in Section 3.2, for different planar objects. In
particular, we distinguished between horizontal and vertical planes and used
masks from our dataset. Fig. 6 and Table 2 show the results for the iBims-1

dataset. Beside a combined error, including all planar labels, we separately
computed the errors for the individual objects as well. The results show different
performances for individual classes, especially orientations of floors were predicted
in a significantly higher accuracy for all methods, while the absolute orientation
error for walls is surprisingly high. Apart from the general performance of
all methods, substantial differences between the considered methods can be
determined. It is notable that the method of Li et al. [19] achieved much better
results in predicting orientations of horizontal planes but also performed rather
bad on vertical surfaces.

Location Accuracy of Depth Boundaries The high quality of our reference
dataset facilitates an accurate assessment of predicted depth discontinuities.
As ground truth edges, we used the provided edge maps from our dataset and
computed the accuracy and completeness errors εaccDBE and εcomp

DBE , respectively,
introduced in Section 3.2. Quantitative results for all methods are listed in Table 2.
Comparing the accuracy error of all methods, Liu et al. [21] and Li et al. [19]
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(a) Ground truth (b) Predictions (c) Depth plane (d) Differences

Fig. 7: Visual results after applying DBE (a+b) and DDE (c+d) on iBims-1:
(a) ground truth edge ( ). (b) Edge predictions using the methods of Li et al.
[19] ( ) and Laina et al. [15] ( ). (c) Ground truth depth plane at d = 3m
separating foreground from background ( ). (d) Differences between ground
truth and predicted depths using the method of Li et al. [19]. Color coded are
depth values that are either estimated too short ( ) or too far ( )

achieved best results in preserving true depth boundaries, while other methods
tended to produce smooth edges losing sharp transitions which can be seen in
Figs. 7a and 7b. This smoothing property also affected the completeness error,
resulting in missing edges expressed by larger values for εcomp

DBE .

Directed Depth Error The DDE aims to identify predicted depth values
which lie on the correct side of a predefined reference plane but also distinguishes
between overestimated and underestimated predicted depths. This measure could
be useful for applications like 3D cinematography, where a 3D effect is generated
by defining two depth planes. For this experiment, we defined a reference plane at
3m distance and computed the proportions of correct ε0DDE, overestimated ε+DDE,
and underestimated ε−DDE depth values towards this plane according to the error
definitions in Section 3.2. Table 2 lists the resulting proportions for iBims-1,
while a visual illustration of correctly and falsely predicted depths is depicted in
Figs. 7c and 7d. The results show that the methods tended to predict depths to
a too short distance, although the number of correctly estimated depths almost
reaches 85% for iBims-1.
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Table 2: Quantitative results for standard metrics and proposed PE, DBE, and
DDE metrics on iBims-1 applying different SIDE methods

Method Standard Metrics (σi = 1.25i) PE (cm/◦) DBE (px) DDE (%)

rel log10 RMS σ1 σ2 σ3 εplan
PE

εoriePE εaccDBE εcomp

DBE
ε0DDE ε−

DDE
ε+
DDE

Eigen [8] 0.32 0.17 1.55 0.36 0.65 0.84 6.65 25.62 5.48 70.31 72.06 25.71 2.23
Eigen (AlexNet) [7] 0.30 0.15 1.38 0.40 0.73 0.88 6.34 21.74 4.57 46.52 78.24 17.86 3.90
Eigen (VGG) [7] 0.25 0.13 1.26 0.47 0.78 0.93 4.93 17.18 4.51 43.64 80.73 17.47 1.80

Laina [15] 0.25 0.13 1.20 0.50 0.78 0.91 5.71 18.49 6.89 40.48 81.65 15.91 2.43
Liu [21] 0.30 0.13 1.26 0.48 0.78 0.91 6.82 29.22 3.57 31.75 80.46 13.26 6.28
Li [19] 0.22 0.11 1.07 0.59 0.85 0.95 6.22 20.17 3.68 36.27 84.13 12.49 3.38

Table 3: Quantitative results on the augmented iBims-1 dataset exemplary listed
for the global relative distance error. Errors showing relative differences for
various image augmentations towards the predicted original input image (Ref)

Method Ref. Geometric Contrast Ch. Swap Hue Saturation

LR UD γ = 0.2 γ = 2 Norm. BGR BRG +9◦ +90◦ ×0 ×0.9

Eigen [8] 0.322 ❂0.003 0.087 0.056 0.015 0.000 0.017 0.018 0.001 0.021 0.003 0
Eigen (AlexNet) [7] 0.301 0.006 0.147 0.105 0.023 ❂0.002 0.017 0.008 0.002 0.017 0.007 0
Eigen (VGG) [7] 0.254 0.003 0.150 0.109 0.008 0.000 0.010 0.013 0.000 0.012 0.009 0
Laina [15] 0.255 ❂0.004 0.161 0.078 0.022 ❂0.001 0.007 0.009 0.000 0.007 0.003 0

5.2 Further Analyses

Making use of our auxiliary dataset, a series of additional experiments were
conducted to investigate the behavior of SIDE methods in special situations. The
challenges cover an augmentation of our dataset with various color and geometrical
transformations and an auxiliary dataset containing images of printed patterns
and NYU-v2 images on a planar surface.

Data Augmentation In order to assess the robustness of SIDE methods w.r.t.
simple geometrical and color transformation and noise, we derived a set of
augmented images from our dataset. For geometrical transformations we flipped
the input images horizontally—which is expected to not change the results
significantly—and vertically, which is expected to expose slight overfitting effects.
As images in the NYU-v2 dataset usually show a considerable amount of pixels
on the floor in the lower part of the picture, this is expected to notably influence
the estimated depth maps. For color transformations, we consider swapping of
image channels, shifting the hue by some offset h and scaling the saturation by a
factor s. We change the gamma values to simulate over- and under-exposure and
optimize the contrast by histogram stretching. Blurred versions of the images
are simulated by applying gaussian blur with increasing standard deviation σ.
Furthermore, we consider noisy versions of the images by applying gaussian
additive noise and salt and pepper noise with increasing variance and amount of
affected pixels, respectively.
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Fig. 8: Quality of SIDE results, achieved using the methods proposed by Eigen
et al. [8] ( ), Eigen and Fergus [7] (AlexNet , VGG ), and Laina et al. [15]
( ) for augmentations with increasing intensity. Vertical lines ( ) correspond to
discrete augmentation intensities

(a) Input RGB (b) Laina et al. [15] (c) Liu et al. [21] (d) Eigen [7]

Fig. 9: Predicted depth for a sample from the auxiliary part of the proposed
iBims-1 dataset showing printed samples from the Patterns [1] dataset (top)
and the NYU-v2 dataset [28] (bottom) on a planar surface

Table 3 shows results for these augmented images using the global relative
error metric for selected methods. As expected, the geometrical transformations
yielded contrasting results. While the horizontal flipping did not influence the
results by a large margin, flipping the images vertically increased the error by up
to 60%. Slight overexposure influenced the result notably, underexposure seems
to have been less problematic. Histogram stretching had no influence on the
results, suggesting that this is already a fixed or learned part of the methods.
The methods also seem to be robust to color changes, which is best seen in the
results for s = 0, i.e., greyscale input images which yielded an equal error to
the reference. The results for blurring the input images with a gaussian kernel
of various sizes, as well as adding a different amount of gaussian and salt and
pepper noise to the input images are depicted in Fig. 8.
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Textured Planar Surfaces Experiments with printed patterns and NYU-v2

samples on a planar surface exploit which features influence the predictions of
SIDE methods. As to be seen in the first example in Fig. 9, gradients seem
to serve as a strong hint to the network. All of the tested methods estimated
incorrectly depth in the depicted scene, none of them, however, identified the
actual planarity of the picture.

6 Conclusions

We presented a novel set of quality criteria for the evaluation of SIDE methods.
Furthermore, we introduced a new high-quality dataset, fulfilling the need for
an extended ground truth of our proposed metrics. Using this test protocol we
evaluated and compared state-of-the-art SIDE methods. In our experiments,
we were able to assess the quality of the compared approaches w.r.t. to various
meaningful properties, such as the preservation of edges and planar regions, depth
consistency, and absolute distance accuracy. Compared to commonly used global
metrics, our proposed set of quality criteria enabled us to unveil even subtle
differences between the considered SIDE methods. In particular, our experiments
have shown that the prediction of planar surfaces, which is crucial for many
applications, is lacking accuracy. Furthermore, edges in the predicted depth maps
tend to be oversmooth for many methods. We believe that our dataset is suitable
for future developments in this regard, as our images are provided in a very high
resolution and contain new sceneries with extended scene depths.

The iBims-1 dataset can be downloaded at www.lmf.bgu.tum.de/ibims1.
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