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Abstract. Can an algorithm create original and compelling fashion de-
signs to serve as an inspirational assistant? To help answer this question,
we design and investigate different image generation models associated
with different loss functions to boost novelty in fashion generation. The
dimensions of our explorations include: (i) different Generative Adver-
sarial Networks architectures that start from noise vectors to generate
fashion items, (ii) a new loss function that encourages novelty, and (iii) a
generation process following the key elements of fashion design (disentan-
gling shape and texture). A key challenge of this study is the evaluation
of generated designs and the retrieval of best ones, hence we put together
an evaluation protocol associating automatic metrics and human exper-
imental studies. We show that our proposed creativity loss yields better
overall appreciation than the one employed in Creative Adversarial Net-
works. In the end, about 61% of our images are thought to be created by
human designers rather than by a computer while also being considered
original per our human subject experiments, and our proposed loss scores
the highest compared to existing losses in both novelty and likability.
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1 Introduction

Artificial Intelligence (AI) research has been making huge progress in the ma-
chine’s capability of human level understanding across the spectrum of percep-
tion, reasoning and planning [1], [2], [3]. Another key direction yet relatively
understudied is creativity where the goal is for machines to generate original
items with realistic, aesthetic attributes, usually in artistic contexts. We can in-
deed imagine AI to serve as inspiration for humans in the creative process and
also to act as a sort of assistant able to help with more mundane tasks, espe-
cially in the digital domain. Previous work has explored writing pop songs [4],
imitating the styles of great painters [5], [6] or doodling sketches [7] for instance.

There has also been a growing interest in generating images using GANs,
given their ability to generate appealing images unconditionally [8], or condi-
tionally like from text, class labels, and for paired and unpaired image transla-
tions [9–11]. However, it is not clear how creative such attempts can be considered
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since most of them mainly tend to mimic training samples without expressing
much originality. Creative Adversarial Networks (CANs) [12] have then been pro-
posed to adapt GANs to generate original content (paintings) by encouraging
the model to deviate from existing painting styles. Technically, CAN is a Deep
Convolutional GAN (DCGAN) model [13] associated with an entropy loss that
encourages novelty against known art styles. The specific application domain
of CANs (art paintings) allows for very abstract generations to be acceptable
but, as a result, does reward originality a lot without judging much how such
enhanced creativity can be mixed with realism and standards.

In this paper we study how AI can generate creative samples for fashion.
Fashion is an interesting domain because designing original garments requires a
lot of creativity but with the constraints that items must be wearable. In con-
trast to most generative models works [14–16], the originality angle we introduce
makes us go beyond replicating images seen during training. Fashion image gen-
eration opens the door for breaking creativity into design elements (shape and
texture in our case), which is a novel aspect of our work in contrast to CANs.
More specifically, this work explores various architectures and losses that en-
courage GANs to deviate from existing fashion styles covered in the training
dataset, while still generating realistic pieces of clothing without needing any
image as input. To the best of our knowledge, this work is the first attempt at
incorporating creative fashion generation by explicitly relating it to its design
elements.

Contributions. (1) We are the first to propose a novelty loss on image
generation of fashion items with a specific conditioning of texture and shape,
learning a deviation from existing ones. (2) We re-purposed automatic entropy
based evaluation criteria for assessment of fashion items in terms of texture and
shape; The correlations between the automatic metrics that we proposed and our
human study allowed us to draw some conclusions with useful metrics revealing

human judgment. (3) We proposed a shape conditioned model named Style GAN
and a concrete solution to make it work in a non-deterministic way. Trained with
creative losses, it results in a novel and powerful model. Our best models manage
to generate realistic images with high resolution 512 × 512 using a relatively
small dataset (about 4000 images). More than 60% of our generated designs are
judged as being created by a human designer while also being considered original,
showing that an AI could offer benefits serving as an efficient and inspirational
assistant.

2 Models: architectures and losses

2.1 Network architectures

We experiment using two architectures: a modified version of the DCGANmodel [13]
for higher resolution output images, and our proposed styleGAN model as de-
scribed below. In addition to its real/fake branch classification, the discriminator
in each architecture is augmented with optional classification branches each for
shape and texture classes.
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Fig. 1. From the segmented mask of a
fashion item and different random vec-
tor z, our StyleGAN model generates
different styled images.

Fig. 2. From the mask of a prod-
uct, our StyleGAN model gener-
ates different styled image for each
style noise.

GANs with optional classification loss. Let D be a dataset of N images.
Following [10], we use shape and texture labels to learn a shape classifier and
a texture classifier in the discriminator. Adding these labels improves over the
plain model and stabilizes the training for larger resolution. We are adding to the
discriminator network either one branch for texture or for shape classification,
or two branches for both shape and texture classification and denote the extra
classification output of the discriminator Db. The additional loss is:

LD classif = −

∑

xi∈D

log(softmax(Db(xi)). (1)

StyleGAN: Conditioning on masks. In this model, a generator is trained
to compute realistic images from a mask input and noise representing style in-
formation (Fig. 1). We use the same discriminator architecture as in DCGAN
with classifier branches that learn shape and texture classification on real images
on top of real/fake prediction. Training styleGAN with two inputs is difficult,
previous approaches of image to image translation such as pix2pix [17] and Cy-
cleGAN [11] create a deterministic mapping between an input image to a single
corresponding one, i.e. edges to handbags for example or from one domain to
another. To make sure that no input is being neglected, we add a ℓ1 loss forcing
the generator to output the mask itself in case of null style input z and thus
ensure the impact of the shape in the generations as shown in Fig. 1.

2.2 Novelty losses

Because GANs learn to generate images very similar to the training images, we
explore ways to make them deviate from this replication by studying the impact
of two additional losses for the generator: the CAN loss (as used in [12]), and
an MCE loss that encourage the generator to confuse the discriminator.

– CAN loss: As proposed in [12], the CAN loss is defined as

LCAN = −λ

[

∑

i

K
∑

k=1

1

K
log(σ(Db,k(G(zi)))) +

K − 1

K
log(1− σ(Db,k(G(zi))))

]

,

(2)
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where σ is the sigmoid function, and K the number of texture, shape, or
both classes.

– MCE loss: We propose to use as alternative additional generator’s loss the
Multi-class Cross Entropy (MCE) loss between the class prediction of the
discriminator and the uniform probability vector.

LMCE = −λ
∑

i

∑

k

1

K
log softmax(D(G(zi))). (3)

Both MCE and sum of binary cross entropy losses encourage deviation from
existing categories. However, our MCE criterion considers all classes globally in
the softmax unlike the CAN loss which is based on a sum of K independent
binary classification losses.

3 Results

Dataset. Unlike similar work focusing on fashion item generation [16, 15], we
choose a dataset containing fashion items in uniform background allowing the
trained models to learn features useful for creative generation without generating
wearer faces and backgrounds. We augment the dataset of 4157 images by a
factor 5 by jittering images with random scaling and translations. The images
are classified into seven clothes categories: jackets, coats, shirts, tops, t-shirts,
dresses and pullovers, and 7 textures categories: uniform, tiled, striped, animal
skin, dotted, print and graphical pattern.

Automatic evaluation metrics. Evaluating the diversity and quality of a
set of images has been tackled by scores such as the inception score and variants
like the AM score [18]. We adapt both of them for two labels specific to fashion
design (shape and texture) and supplement them by a mean nearest neighbor
distance. Our final set of automatic scores contains 5 metrics : (1,2) shape score
and texture score, each based on a Resnet-18 classifier [19] of shape or texture
respectively. (3,4) shape AM score and texture AM score, based on the output of
the same classifiers. (5) mean distance to 10 nearest neighbors score. We compute
the mean distance for each sample to its retrieved k-Nearest Neighbors (NN),
with k = 10, as the Euclidean distance between the features extracted from a
Resnet18 pre-trained on ImageNet by removing its last fully connected layer.

Creating evaluation sets. We select for each setup (DCGAN or styleGAN
trained with texture, shape, both or none novelty criterion) four saved models
after a sufficient number of iterations. Our models produce plausible results after
training for 15000 iterations with a batch size of 64 images.

Given a set of 10000 generations from a model, we extract different sets of
images with particular visual properties such as (ii) high/low texture entropy,
(iii) high/low NN distance to real images. We also explore random and mixed sets
such as low shape entropy and high nearest neighbors distance. We expect such
a set to contain plausible generations since low shape entropy usually correlates
with well defined shapes, while high nearest neighbor distance contains unusual
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designs. Overall, we have 8 different sets that may overlap. We choose to evaluate
100 images for each set.

Automatic evaluation results We set λ = 5 for the MCE loss, and λ = 1
for the CAN loss, as these parameters appeared to work best. All models were
trained using the default learning rate 0.002 as in [13]. Our different models
take about half a day to train on 4 Nvidia P100 GPUs for 256× 256 models and
almost 2 days for the 512× 512 ones.

Table 1 presents shape and texture scores, AM scores (for shape and texture)
and average NN distances computed for each model on 4 selected iterations. Our
first observation is that the DCGAN model alone seems to perform worse than
all other tested models with the highest NN distance and lower shape and texture
scores. The value of the NN distance score may have different meanings. A high
value could mean an enhanced ”creativity” of the model, but also a higher failure
rate. The two models having high shape score, AM shape score, AM texture score
and NN distances scores are DCGAN with creativity losses models.

Method/Score shape tex. AM AM NN
sh tx

Dataset 6.25 3.76 20.4 12.6 5.65
GAN 4.70 2.74 13.3 8.92 14.4

GAN classif 5.31 2.86 14.8 9.68 13.1
CAN shape 5.27 2.77 14.7 8.92 13.1
CAN tex 5.24 3.01 14.4 9.48 13.5

CAN shTex 5.20 3.24 14.7 10.0 13.1
MCE shape 5.07 2.80 13.6 8.90 13.0
MCE tex 5.14 3.33 14.4 9.30 13.6

MCE shTex 4.98 3.04 13.3 9.52 13.2

Table 1. Quantitative automatic
evaluation. High scores appear in
bold.

Method/Human over- shape shape tex. tex. real
Method all nov. comp. nov. comp. fake
DCGAN MCE shape 3.78 3.58 3.57 3.64 3.57 60.9

DCGAN MCE tex 3.72 3.57 3.52 3.61 3.58 61.1

StyleGAN CANtex 3.65 3.37 3.31 3.44 3.21 49.7
StyleGAN MCE tex 3.61 3.38 3.29 3.50 3.37 53.4
StyleGAN 3.59 3.28 3.21 3.27 3.15 47.2
DCGAN MCEshtex 3.49 3.40 3.24 3.40 3.31 61.3

DCGAN CANshtex 3.47 3.28 3.18 3.33 3.16 63.8

DCGAN classif 3.42 3.32 3.32 3.37 3.29 52.7
DCGAN CANtex 3.37 3.23 3.12 3.35 3.09 59.7
DCGAN CANshape 3.33 3.28 3.16 3.27 3.12 55.0
DCGAN 3.22 2.95 2.78 3.24 2.83 60.4

Table 2. Human evaluation ranked by decreas-
ing overall score (higher is better).

Human evaluation. Each image was rated by 5 persons asked to answer 6
questions: Q1: how do you like this design overall on a scale from 1 to 5? Q2/Q3:
rate the novelty of shape (Q2) and texture (Q3) from 1 to 5. Q4/Q5: rate the
complexity of shape (Q4) and texture (Q5) from 1 to 5.Q6: Do you think this
image was created by a fashion designer or generated by computer? (yes/no).

Table 2 presents the average score obtained by each model on each hu-
man evaluation question for the RTW dataset. From this table, we can see
that using our novelty loss (MCE shape and MCE tex) performs better than
the DCGAN baseline. While the two proposed models with MCE originality
loss rank the best on the overall score, we observe that the preferred images
have low nearest neighbor distance. This means that generations which are
not close to their nearest neighbors are not always pleasant. It is indeed a
challenge to obtain models able to generate novel (high nearest neighbor dis-
tance) and at the same time pleasant generations. However, we observe that
the models that score better in the high nearest neighbors distance set are
clearly the ones with our novelty loss(MCE). Fig. 3 shows how well our ap-
proaches worked on two axis: likability and real appearance. The most pop-
ular methods are obtained by the models employing an originality loss and
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Fig. 4. Best generations as rated by annotators. Left: Q1: overall score, Q2: shape nov-
elty, Q3: shape complexity; Right: Q4: tex. novelty, Q5: tex. complexity, Q6: Realism.

in particular our proposed MCE originality criterion, as they are perceived
as the most likely to be generated by designers, and the most liked overall.

Fig. 3. Evaluation of the differ-
ent models on the RTW dataset
by human annotators on two
axis: likability and real appear-
ance. Our models reach nice
trade-offs between real appear-
ance and likability.

We are greatly improving the state-of-the-art
here, going from a score of 64 to more than 75
in likeability from classical GANs to our best
model with shape creativity. We display images
which obtained the best scores for each of the 6
questions in Fig. 4. Our proposed Style GAN
(See Fig. 2) is producing competitive scores
compared to the best DCGAN setups. In partic-
ular, StyleGAN with originality loss is ranked
in the top-3.

We computed correlation scores between our
automatic metrics and human ratings. The met-
ric that correlates the most with the overall
score is the NN distance. There is also a nega-
tive correlation of NN dist with real appearance.

4 Conclusion

We introduced a specific conditioning of GANs on texture and shape elements for
generating fashion design images. While GANs with such classification loss offer
realistic results, they tend to reconstruct the training images. Using an MCE
originality loss, we learn to deviate from a reproduction of the training set. We
also propose a novel architecture named StyleGAN model, conditioned on an
input mask, enabling shape control while leaving free the creativity space on
the inside of the item. All these contributions lead to the best results according
to our human evaluation study. We manage to generate accurately 512 × 512
images, however we seek for better resolution, which is a fundamental aspect of
image quality, in our future work. Finally, while our results show visually pleasing
textural novelty, it will be interesting to explore larger families of novelty loss
functions, and ensure wearability constraints.
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