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Abstract. Neural network compression has recently received much at-
tention due to the computational requirements of modern deep models.
In this work, our objective is to transfer knowledge from a deep and
accurate model to a smaller one. Our contributions are threefold: (i) we
propose an adversarial network compression approach to train the small
student network to mimic the large teacher, without the need for labels
during training; (ii) we introduce a regularization scheme to prevent a
trivially-strong discriminator without reducing the network capacity and
(iii) our approach generalizes on different teacher-student models.
In an extensive evaluation on five standard datasets, we show that our
student has small accuracy drop, achieves better performance than other
knowledge transfer approaches and it surpasses the performance of the
same network trained with labels. In addition, we demonstrate state-of-
the-art results compared to other compression strategies.

1 Introduction

Deep learning approaches dominate on most recognition tasks nowadays. Con-
volutional Neural Networks (ConvNets) rank highest on classification [56], ob-
ject detection [35], image segmentation [6] and pose estimation [38], just to
name a few examples. However, the superior performance comes at the cost of
model complexity and large hardware requirements. Consequently, deep models
often struggle to achieve real-time inference and cannot generally be deployed
on resource-constrained devices, such as mobile phones.

In this work, our objective is to compress a large and complex deep network
to smaller one. Network compression is a solution that only recently attracted
more attention because of the deep neural networks. One can train a deep model
with quantized or binarized parameters [48, 41, 54], factorize it, prune network
connections [16, 26] or transfer knowledge to a small network [2, 4, 20]. In the
latter case, the student network is trained with the aid of the teacher.

We present a network compression algorithm whereby we complement the
knowledge transfer, in the teacher-student paradigm, with adversarial training.
In our method, a large and accurate teacher ConvNet is trained in advance.
Then, a small student ConvNet is trained to mimic the teacher, i.e. to obtain the
same output. Our novelty lies in drawing inspiration from Generative Adversarial
Networks (GANs) [14] to align the teacher-student distributions. We propose a
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two-player game, where the discriminator distinguishes whether the input comes
from the teacher or student, thus effectively pushing the two distributions close
to each other. In addition, we come up with a regularization scheme to help
the student in competing with the discriminator. Our method does not require
labels, only the discriminator’s objectives and an L2 loss between the teacher and
student output. We name our new algorithm adversarial network compression.

An extensive evaluation on CIFAR-10 [27], CIFAR-100 [27], SVHN [37],
Fashion-MNIST [55] and ImageNet [10] shows that our student network has small
accuracy drop and achieves better performance than the related approaches on
knowledge transfer. In addition, we constantly observe that our student achieves
better accuracy than the same network trained with supervision (i.e. labels). In
our comparisons, we demonstrate superior performance next to other compres-
sion approaches. Finally, we employ three teacher and three student architectures
to support our claim for generalization.

We make the following contributions: (i) a knowledge transfer method based
on adversarial learning to bridge the performance of a large model with a smaller
one with limited capacity, without requiring labels during learning; (ii) a regular-
ization scheme to prevent a trivially-strong discriminator and (iii) generalization
on different teacher-student architectures.

2 Related Work

Neural network compression has been known since the early work of [17, 49], but
recently received much attention due to the combined growth of performance and
computational requirements in modern deep models. Our work mostly relates to
model compression [2, 4] and network distillation [20]. We review the related
approaches on neural network compression by defining five main categories and
then discuss adversarial training.

I. Quantization & Binarization The standard way to reduce the size and accel-
erate the inference is to use weights with discrete values [48, 54]. The Trained
Ternary Quantization [65] reduces the precision of the network weights to ternary
values. In incremental network quantization [64], the goal is to convert progres-
sively a pre-trained full-precision ConvNet to a low-precision. Based on the same
idea, Gong et al. [13] have clustered the weights using k-means and then per-
formed quantization. The quantization can be efficiently reduced up to binary
level as in XNOR-Net [41], where the weight values are -1 and 1, and in Bi-
naryConnect [9], which binarizes the weights during the forward and backward
passes but not during the parameters’ update. Similar to binary approaches,
ternary weights (-1,0,1) have been employed as well [31].

II. Pruning Reducing the model size (memory and storage) is also the goal
of pruning by removing network connections [5, 51, 60]. At the same time, it
prevents over-fitting. In [16], the unimportant connections of the network are
pruned and the remaining network is fine-tuned. Han et al. [15] have combined
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the idea of quantization with pruning to further reduce the storage requirements
and network computations. In HashedNets [7], the network connections have
been randomly grouped into hash buckets where all connections of the same
bucket share the weight. However, the sparse connections do not necessarily
accelerate the inference when employing ConvNets. For this reason, Li et al. [32]
have pruned complete filters instead of individual connections. Consequently, the
pruned network still operates with dense matrix multiplications and it does not
require sparse convolution libraries. Parameter sharing has also contributed to
reduce the network parameters in neural networks with repetitive patterns [3,
46].

III. Decomposition / Factorization In this case, the main idea is to construct low
rank basis of filters. For instance, Jaderberg et al. [26] have proposed an agnostic
approach to have rank-1 filters in the spatial domain. Related approaches have
also explored the same principle of finding a low-rank approximation for the
convolutional layers [43, 11, 29, 58]. More recently, it has been proposed to use
depthwise separable convolutions, as well as, pointwise convolutions to reduce
the parameters of the network. For example, MobileNets are based on depthwise
separable convolutions, followed by pointwise convolutions [21]. In a similar way,
ShuffleNet is based on depthwise convolutions and pointwise group convolutions,
but it shuffles feature channels for increased robustness [63].

IV. Efficient Network Design The most widely employed deep models, AlexNet
[28] and VGG16 [47], demand large computational resources. This has moti-
vated more efficient architectures such as the Residual Networks (ResNets) [18]
and their variants [23, 61], which reduced the parameters, but maintained (or
improved) the performance. SqueezeNet [24] trims the parameters further by
replacing 3x3 filters with 1x1 filters and decreasing the number of channels for
3x3 filters. Other recent architectures such as Inception [50], Xception [8], Con-
denseNet [22] and ResNeXt [56] have also been efficiently designed to allow
deeper and wider networks without introducing more parameters than AlexNet
and VGG16. Among the recent architectures, we pick ResNet as the standard
model to build the teacher and student. The reason is the model simplicity
where our approach applies to ResNet variations as well as other architectures.

Network compression categories I-IV address the problem by reducing the
network parameters, changing the network structure or designing computation-
ally efficient components. By contrast, we focus on knowledge transfer from a
complex to a simpler network without interventions on the architecture. Our
knowledge transfer approach is closer to network distillation, but it has impor-
tant differences that we discuss bellow.

V. Distillation Knowledge transfer has been successfully accomplished in the
past [2, 33], but it has been popularized by Hinton et al. [20]. The goal is to
transfer knowledge from the teacher to the student by using the output before
the softmax function (logits) or after it (soft targets). This task is known as
network compression [2, 4] and distillation [20, 40]. In our work, we explore the
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problem for recent ConvNet architectures for the teacher and student roles. We
demonstrate that network compression performs well with deep models, simi-
lar to the findings of Urban et al. [53]. Differently from the earlier works, we
introduce adversarial learning into compression for the first time, as a tool for
transferring knowledge from the teacher to the student by their cooperative ex-
ploration. Also differently from the original idea of Hinton et al. [20] and the
recent one from Xu et al. [57], we do not require labels for the student training
during compression. In the experiments, our results are constantly better than
network distillation.

Adversarial Learning Our work is related to the Generative Adversarial Net-
works (GAN) [14] where a network learns to generate images with adversarial
learning, i.e. learning to generate images which cannot be distinguished by a dis-
criminator network. We take inspiration from GANs and introduce adversarial
learning in model compression by challenging the student’s output to become
identical to the teacher. Closer to our objective is the work from Isola et al. [25]
to map an image to another modality with a conditional Generative Adversarial
Network (cGAN) [36]. Although, we do not have a generator in our model, we
aim to map the student to teacher output given the same input image. However,
compared to the teacher, the student is a model with limited capacity. This mo-
tivates a number of novel contributions, needed for the successful adversarial
training.

3 Method

We propose the adversarial network compression, a new approach to transfer
knowledge between two networks. In this section, we define the problem and
discuss our approach.

3.1 Knowledge Transfer

We define a deep and accurate network as teacher ft(x;wt) and a small network
as student fs(x;ws). The teacher has very large capacity and is trained on
labeled data. The student is a shallower network with significant less parameters.
Both networks perform the same task, given an input image x. Our objective
is to train the student to mimic the teacher by predicting the same output.
To achieve it, we introduce the discriminator D, another network that learns to
detect the teacher / student output based on adversarial training. We train the
student together with D by using the knowledge of the teacher for supervision.

In this work, we address the problem of classification. For transferring knowl-
edge, we consider the unscaled log-probability values (i.e. logits) before the soft-
max activation function, as well as, features from earlier layers. Bellow, we sim-
plify the notation to ft(x) for the teacher and fs(x) for the student network
output (logits). In addition, the feature representation of the teacher at k − th

layer is defined as fk
t (x) and for the student at l − th layer is denoted as f l

s(x).
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In practice, fk
t (x) and f l

s(x) are the last layers before the logits. An overview of
our method is illustrated in Fig. 1.

Fig. 1. Adversarial Network Compression: Our method consists of the teacher,
student and discriminator networks. The teacher is trained in advance and used for
supervision during adversarial learning, while the student and discriminator are both
trainable. The discriminator takes as input the features from the teacher and student,
as well as, the adversarial sample (i.e. student labeled as teacher). For the adversarial
sample, we empirically found that dropout is beneficial. In addition, there is a L2 loss
to force the student to mimic the output of the teacher.

3.2 Generative Adversarial Networks

We shortly discuss the Generative Adversarial Networks (GANs) [14] to illustrate
the connection with our approach. In GANs, the main idea is to simultaneously
train two networks (two-player game) that compete with each other in order
to improve their objectives. The first network, the generator G, takes random
noise (i.e. latent variables) input z to generate images. In addition to the noise,
the input can be conditioned on images or labels [36]. In both cases, the goal is
to learn generating images that look real by aligning the real data and model
distributions. The second network, the discriminator D, takes as input an image
from the data distribution and the generator’s output; and the objective is to
classify whether the image is real or fake. Overall, G tries to fool D, while D tries
to detect input from G. Isola et al. [25] have shown that a conditional Generative
Adversarial Network (cGAN) successfully transforms an input image to another
modality y using the adversarial learning. The objective of cGAN can be written
as:

LcGAN (G,D) =Ex,y∼pdata(x,y)[log(D(x, y))]+

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z))], (1)

where pdata(x, y) corresponds to the real data distribution over the input image
x and label y; and pz(z) to the prior distribution over the input noise z. During
training, the objective is maximized w.r.t. D and minimized w.r.t. G. In both
cases, the loss is cross entropy for the binary D output.
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3.3 Adversarial Compression

In the context of network compression, we propose to adapt the two-player game
based on the teacher and student. The goal now is to adversarially train D

to classify whether input samples come from the teacher or student network.
Both networks share the same input, namely an image x, but their predictions
differ. We choose fk

t (x) and f l
s(x) feature representations from both networks

as input to D. During training, D is firstly updated w.r.t the labels from both
input samples (blue lines, Fig. 1). Next, the student network is updated by
inverting the labels for the student samples (calling them teacher). The reason
for changing the labels is to back-propagate gradients that guide the student to
produce output as the teacher for the same input image (red line, Fig. 1). The
teacher network has been trained in advance with labels and it is not updated
during training. Eventually, fooling the discriminator translates in predicting the
same output for teacher and student networks. This is the same objective as in
network distillation. After reformulating Eq. (1), we define our objective as:

LAdv(fs, D) =Efk

t
(x)∼pteacher(x)

[log(D(fk
t (x)))]+

Ef l
s
(x)∼pstudent(x),z∼pz(z)[log(1−D(f l

s(x)))]. (2)

where pteacher(x) and pstudent(x) correspond to the teacher and student feature
distribution. We provide the noise input in the form of dropout applied on the
student, similar to [25]. However, the dropout is active only during the student
update (red arrow in Fig. 1). We experimentally found that using the dropout
only for the student update gives more stable results for our problem. We omit
z in f l

s(x) to keep the notation simple.
The reason for using the features fk

t (x) and f l
s(x) as input toD, instead of the

logits ft(x) and fs(x), is their dimensionality. The features usually have higher
dimensions, which makes the judgment of the discriminator more challenging.
We evaluate this statement later in the experimental section. Training D with
input from intermediate output (fk

t (x) and f l
s(x)) from teacher and student

works fine for updating the parameters of D and partially for the student. In
student, there is a number of parameters until the final output fs(x) (logits)
which also has to be updated. To address this problem, we seek to minimize the
difference between the two networks output, namely ft(x) and fs(x). This is the
data objective in our formulation that is given by:

LData(fs) =Efs(x)∼pstudent(x)

[

‖ ft(x)− fs(x) ‖
2
2

]

. (3)

The data term contributes to the update of all student parameters. We found it
very important for the student network convergence (green dashed lines, Fig. 1)
since our final goal is to match the output between the teacher and student.
The final objective with both terms is expressed as:

argmin
fs

max
D

LAdv(fs, D) + λLData(fs). (4)

where λ is a tuning constant between the two terms.
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The data term of our model is the same with the compression objective of Ba
and Caruana [2] and in accordance with the work of Isola et al [25]. In addition,
we aim for the exact output between teacher - student and thus using only the
adversarial objective does not force the student to be as close as possible to the
teacher. Note also that the role of G is implicitly assigned to the student, but
it is not explicitly required in our approach. For the adversarial part, we share
the label inversion idea for the adversarial samples from ADDA [52] and reversal
gradient [12]. Below, we discuss the network architectures for exploring the idea
of adversarial learning in network compression.

3.4 Network Architectures

Our model is composed of three networks: the teacher, student and discriminator
D. Here, we present all three architectures.

Teacher We choose the latest version of ResNet [19] for this role, since it
is currently the standard architecture for recognition tasks. The network has
adaptive capacity based on the number of bottlenecks and number of feature
per bottleneck. We select ResNet-164 for our experiments. To examine the gen-
eralization of our approach on small-scale experiments, the Network in Network
(NiN) [34] is also selected as teacher. The teacher is trained in advance with
labeled data using cross-entropy.

Student We found it meaningful to choose ResNet architecture for the
student too. Although, the student is based on the same architecture, it has
limited capacity. We perform our experiments with ResNet-18 and ResNet-20.
For small-scale experiments, we employ LeNet-4 [30] for the student role. It
is a shallow network and we experimentally found that it can be easily paired
with NiN. The student network parameters are not trained on the labeled data.
Furthermore, the labels are not used in the adversarial compression.

Discriminator This discriminator D plays the most important role among
the others. It can be interpreted as a loss function with parameters. The dis-
criminator has to strike a balance between simplicity and network capacity to
avoid being trivially fooled. We choose empirically a relative architecture. Our
network is composed of three fully-connected (FC) layers (128 - 256 -128) where
the network input comes from the teacher fk

t (x) and student f l
s(x). The interme-

diate activations are non-linearities (ReLUs). The output is a binary prediction,
given by a sigmoid function. The network is trained with cross entropy where
the objective is to predict between teacher or student. This architecture has
been chosen among others, which we present in the experimental part (Sec. 4.1).
Similar architectures are also maintained by [52] and [62] for adversarial learning.

3.5 Discriminator Regularization

The input to the discriminator has significantly lower dimensions in our prob-
lem compared to GANs for image generation [25, 45]. As a result, it is simpler
for the discriminator to understand the source of input. In particular, it can
easily distinguish teacher from student samples from the early training stages
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(as also maintained in [14]). To address this limitation, we explore different
ways of regularizing the discriminator. Our goal is to prevent the discriminator
from dominating the training, while retaining the network capacity. We consider
therefore three types of regularization, which we examine in our experiments.

L2 regularization This is the standard way of regularizing a neural net-
work [39]. At first, we try the L2 regularization to force the weights of the
discriminator not to grow. The term is given by:

Lregul(D) = −µ

n
∑

i=1

‖wD,i‖
2
2 (5)

where n is the number of network parameters and µ controls the contribution of
the regularizer to the optimization. The parameters of D correspond to wD,i.

L1 regularization Additionally, we try L1 regularization which supports
sparse weights. This is formalized as:

Lregul(D) = −µ

n
∑

i=1

|wD,i| . (6)

In both Eq. (5) and (6) there is negative sign, because the term is updated during
the maximization step of Eq. (4).

Adversarial samples for D In the above cases, there is no guarantee that
the discriminator will become weaker w.r.t student. We propose to achieve it by
updating D with adversarial samples. According to the objective in Eq. (4), the
discriminator is updated only with correct labels. Here, we additionally update
D with student samples that are labeled as teacher. This means that we use the
same adversarial samples to update both student and D. The new regularizer is
defined as:

Lregul(D) =Ef l
s
(x)∼pstudent(x)[logD(f l

s(x))]. (7)

The motivation behind the regularizer is to prolong the game between the
student and discriminator. Eventually, the discriminator manages to distinguish
teacher and student samples, as we have observed. However, the longer it takes
the discriminator to win the game, the more valuable gradient updates the
student receives. The same principle has been also explored for text synthe-
sis [42]. Applying the same idea on the teacher samples does not hold, since it
is fixed and thus a reference in training. Our objective now becomes:

argmin
fs

max
D

LAdv(fs, D) + λLData(fs) + Lregul(D) (8)

where the regularization Lregul(D) corresponds to one of the above approaches.
In the experimental section, we show that our method requires the regularization
in order to achieve good results. In addition, we observed that the introduced
regularization had the most significant influence in fooling D, since it is condi-
tioned on the student.
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3.6 Learning & Optimization

The network compression occurs in two phases. First, the teacher is trained
from scratch on labeled data. Second, the student is trained together with D.
The student is randomly initialized, as well as, D. All models are trained using
Stochastic Gradient Descent (SGD) with momentum. The learning rate is 0.001
for the first 80k training iterations and then it is decreased by one magnitude.
The weight decay is set to 0.0002. The min-batch size is to 128 samples. Fur-
thermore, the dropout is set to 0.5 for the adversarial sample input to D. To
further regularize the data, data augmentation (random crop and flip) is also
included in training. In all experiments, the mean of the training set images
is subtracted and they are divided by the standard deviation. Lastly, different
weighting factors λ have been examined, but we concluded that equal weighting
is a good compromise for all evaluations. In the L1/L2 regularization, the value
of µ is set to 0.99. The same protocol is followed for all datasets, unless it is
differently stated.

4 Evaluation

In this section, we evaluate our approach on five standard classification datasets:
CIFAR-10 [27], CIFAR-100 [27], SVHN [37], Fashion-MNIST [55] and ImageNet
2012 [10]. In total, we examine three teacher and three student architectures.

Our ultimate goal is to train the shallower and faster student network to
perform, at the level of accuracy, as close as possible to the deeper and complex
teacher. Secondly, we aim to outperform the student trained with supervision by
transferring knowledge from the teacher. We report therefore for each experiment
the error, numbers of parameters and floating point operations (FLOPs). The
last two metrics are reported in M-Million or B-Billion scale.

Once we choose the discriminator D and regularization in Sec. 4.1, we per-
form a set of baseline evaluations and comparisons with related approaches for
all datasets in Sec. 4.2 and Sec. 4.3.

Implementation details Our implementation is based on TensorFlow [1].
We also rely on our own implementation for the approach of Ba and Caruana [2]
and Hinton et al. [20]. The results of the other approaches are obtained from
the respective publications. Regarding the network architectures, we rely on the
official TF code for all ResNet variants, while we implement by ourselves the
Network in Network (NiN) and LeNet-4 models.

4.1 Discriminator Model

We discuss the choice of the discriminator D architecture and the impact of the
regularization on D.

Architecture We examine which D architecture should be considered for
adversarial compression. To this end, we consider CIFAR-100 dataset as the most
representative among the small-scale datasets and train our student with adver-
sarial compression. Since the role of the discriminator would be to ensure the
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Table 1. Discriminator Evaluation We choose the discriminator which enables the
best student performance on CIFAR-100, when integrated in the proposed adversarial
compression framework. Fully connected (fc) and convolutional (conv) layers are ex-
amined. We report the student classification error. The best performing model (128fc
- 256fc - 128fc) is used in all other evaluations.

Architecture Error[%] Architecture Error[%]

128fc - 256fc - 128fc 32.45 500fc - 500fc 33.28
64fc - 128fc - 256fc 32.78 256fc - 256fc - 64fc 33.46
256fc - 256fc 32.82 64fc - 64fc 33.51
256fc - 128fc - 64fc 33.05 128conv - 256conv 33.68
64fc - 128fc - 128fc - 64fc 33.09 128fc - 128fc - 128fc 33.72

best student training, we explore several architectures and select the one that
is providing the minimum classification error of the trained student. The dis-
criminator models, except one, are fully connected (fc) with (ReLU) activation,
other than the last layer. We explore two to four fc-layer models with different
capacity. We also made experiments with a convolutional (conv) discriminator
which has lower performance than fc discriminators. The results for the discrim-
inator trials are in Table 1. The best architecture is given by 3 fc-layers of depth
128-256-128. Notice that our best architecture is similar to the D models for
adversarial domain adaption [52] and perceptual similarity [62].

Regularization Here we experiment on the three regularization techniques,
described in Sec. 3.5, on four datasets. We rely on our best performing model,
i.e. the one with features provided as input to D and dropout on the student.
The results are summarized in Table 2. The lack of regularization leads to poorer
performance since it is more difficult to fool the discriminator based on our
observations. In particular, the performance without regularization is worse than
training the student architecture on supervised learning as we show in Sec. 4.2.
Adding the L1 or L2 regularizer indicates an important error drop (L1 and L2
column in Table 2). However, our proposed regularization introduces the most
difficulties in the discriminator that leads to better performance. We use the
adversarial samples for D regularization for the rest evaluations.

4.2 Component Evaluation

Initially, the teacher is trained with labels (i.e. supervised teacher in Table 3-6).
Next, the adversarial compression is performed under different configurations.
The input to D is either the logits or features. In both cases, we also examine
the effect of the dropout on the student. In all experiments, we train the student
only based on teacher supervision and without labels. The results for every
experiment are reported in Table 3-6. In all baselines, there is the L2 loss on the
logits from the teacher and student (i.e. ft(x) and fs(x)). We also provide the
results of the same network as the student trained with labels (i.e. supervised
student in Table 3-6).
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Table 2. Regularization EvaluationWe evaluate three different ways of regularizing
the discriminator D. We also show the performance without regularization. The error
is in percentage. Our adversarial sample in D regularization is presented in the last
column. All experiments have been accomplished with our complete model, namely
features input to D and dropout on the student.

Dataset Teacher Student W/o Regul. L1 L2 Ours

CIFAR-10 ResNet-164 ResNet-20 10.07 8.19 8.16 8.08
CIFAR-100 ResNet-164 ResNet-20 34.10 33.36 33.02 32.45
SVHN ResNet-164 ResNet-20 3.73 3.67 3.68 3.66
F-MNIST NiN LeNet-4 9.62 8.91 8.75 8.64

On CIFAR-10, CIFAR-100 and SVHN experiments, the input to D from
ResNet-164 and ResNet-20 is the features of the average pool layer, which are
used for teacher fk

t (x) and student f l
s(x). On Fashion-MNIST, it is the output

of the last fully connected layer before the logits both for NiN (teacher) and
LeNet-4 (student). The model training runs for 260 epochs in CIFAR-10, CIFAR-
100 and SVHN, while for 120 epochs in Fashion-MNIST. Below, the results are
individually discussed for each dataset.

Table 3. CIFAR-10 Evaluation We
evaluate the components of our approach.
ResNet-164 Parameters: 2.6M, FLOPs:
97.49B. ResNet-20 Parameters: 0.27M,
FLOPs: 10.52B. Our student, ResNet-
20, has around 10x less parameters.

Model Error[%]

Supervised teacher 6.57
ResNet-164

Supervised student 8.58
ResNet-20

Our student (D with logits) 8.31
+ dropout on student 8.10

Our student (D with features) 8.10
+ dropout on student 8.08

Table 4. CIFAR-100 Evaluation The
component evaluation is presented. We
use the same teacher and student models
as in CIFAR-10. ResNet-164 Parameters:
2.6M, FLOPs: 97.49B. ResNet-20 Pa-
rameters: 0.27M, FLOPs: 10.52B.

Model Error[%]

Supervised teacher 27.76
ResNet-164

Supervised student 33.36
ResNet-20

Our student (D with logits) 33.96
+ dropout on student 33.41

Our student (D with features) 33.40
+ dropout on student 32.45

CIFAR-10, Table 3. All compression baselines, based on student with
ResNet-20, have only around 1.5% drop in performance compared to the teacher
(ResNet-164). Moreover, they are all better than the student network, trained
with supervision (i.e. labels), which is 2% behind the teacher. Our complete
model benefits from the dropout on the adversarial samples and achieves the
best performance using feature input to D.

CIFAR-100, Table 4. We also use Resnet-164 for teacher and ResNet-
20 for student to have 10x less parameters as in CIFAR-10. In this evaluation,
the performance drop between the teacher and the compressed models is slightly
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Table 5. SVHN Evaluation We
evaluate the components of our ap-
proach. ResNet-164 Parameters: 2.6M,
FLOPs: 97.49B. ResNet-20 Parameters:
0.27M, FLOPs: 10.52B. The teacher

and student model are similar to CIFAR
evaluation.

Model Error[%]

Supervised teacher 3.98
ResNet-164

Supervised student 4.20
ResNet-20

Our student (D with logits) 3.74
+ dropout on student 3.81

Our student (D with features) 3.74
+ dropout on student 3.66

Table 6. Fashion-MNIST Evalua-

tion We evaluate the components with
different teacher and student. NiN
Parameters: 10.6M, FLOPs: 60.23B.
LeNet-4 Parameters: 2.3M, FLOPs:
7.06B. Our student, LeNet-4, has
around 5x less parameters.

Model Error[%]

Supervised teacher 7.98
NiN

Supervised student 8.77
LeNet-4

Our student (D with logits) 8.90
+ dropout on student 8.84

Our student (D with features) 8.86
+ dropout on student 8.61

Table 7. CIFAR-10 and CIFAR-100 Comparisons We compare our results and
number of network parameters with related methods on similar architectures. We use
ResNet-20 for our student and our complete model.

CIFAR-10 Error[%] Param. CIFAR-100 Error[%] Param.

L2 - Ba et al. [2] 9.07 0.27M Yim et al. [59] 36.67 -
Hinton et al. [20] 8.88 0.27M FitNets [44] 35.04 2.50M
Quantization [65] 8.87 0.27M Hinton et al. [20] 33.34 0.27M

FitNets [44] 8.39 2.50M L2 - Ba et al. [2] 32.79 0.27M
Binary Connect [9] 8.27 15.20M Our student 32.45 0.27M

Yim et al. [59] 11.30 -
Our student 8.08 0.27M

larger. The overall behavior is similar to CIFAR-10. However, the error is reduced
by 1% after adding the dropout to the student using features as input toD. Here,
we had the biggest improvement after using dropout.

SVHN, Table 5. In this experiment, the teacher and student architectures
are still the same. Although, we tried the Network in Network (NiN) and LeNet-
4 as teacher and student, the pair did not perform as well as ResNet. Unlike
in the previous experiments, here the Adam optimizer was used, as it improved
across all ablation results. Notice that our student achieves better performance
not only from the same network trained with labels, the supervised student, but
from the teacher too. This is a known positive side product of the distillation [2].

Fashion-MNIST, Table 6.We select Network in Network (NiN) as teacher
and LeNet-4 as student. The dataset is relative simple and thus a ResNet archi-
tecture is not necessary. All approaches are close to each other.It is clear that
the features input to D and the dropout are important to obtain the best perfor-
mance in comparison to the other baselines. For instance, the student network
trained with supervision (error 8.77%) is better than our baselines other than
our complete model (error 8.61%). Finally the Adam optimizer has been used.
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Table 8. SVHN and F-MNIST Comparisons We compare our results and number
of network parameters with related methods on the same student architecture that is
ResNet-20 for SVHN and LeNet-4 for Fashion-MNIST.

SVHN Error[%] Param. F-MNIST Error[%] Param.

L2 - Ba et al. [2] 3.75 0.27M L2 - Ba et al. [2] 8.89 2.3M
Hinton et al. [20] 3.66 0.27M Hinton et al. [20] 8.71 2.3M

Our student 3.66 0.27M Our student 8.64 2.3M

Common conclusions There is a number of common outcomes for all eval-
uations: 1. the adversarial compression reaches the lowest error when using fea-
tures as input to D; 2. our student performs always better than training the
same network with labels (i.e. supervised student) and 3. we achieve good gen-
eralization on different teacher - student architectures.

Comparisons to state-of-the-art In Tables 7 and 8, we compare our
student with other compression strategies on CIFAR-10 and CIFAR-100. We
choose four distillation [2, 20, 44, 59] and two quantization [9, 65] approaches for
CIFAR-10. We examine the same four distillation methods for a comparison on
CIFAR-100. The work of Ba and Caruana [2] is closer to our approach, because
it relies on L2 minimization, though it is on the logits (see Table 7). The Knowl-
edge Distillation (KD) [20] is also related to our idea, but it relies on labels. Both
evaluations demonstrate that we achieve the lowest error and our student has the
smallest number of parameters. In addition, we compare our results on SVHN
and Fashion-MNIST with two distillation approaches (see Table 8). The error
here is much lower for methods, but we are consistently better than the other
approaches. Next, We demonstrate the same findings on large-scale experiments.

4.3 ImageNet Evaluation

We perform an evaluation on ImageNet to examine whether the distillation is
possible on a large-scale dataset with class number set to 1000. The teacher is a
pre-trained ResNet-152, while we try two different student architectures. At first,
we choose ResNet-18 to train our student using features as input toD and adding
the dropout on the adversarial samples. Regarding the experimental settings, we
have set the batch size to 256, while the rest hyper-parameters remain the same.
All networks use the the average pool layer to output features for D. We evaluate
on the validation dataset. The results are presented in Table 9.

Our findings are consistent with the earlier evaluations. Our best performing
model (features input to D and dropout on student) perform at best and better
than the student trained with supervision. Secondly, we examine a stronger
student where we employ ResNet-50 for training our model. We present our
results in Table 10 where we also compare with binarization, distillation and
factorization methods. Although we achieve the best results, MobileNets has
fewer parameters. We see the adversarial network compression on MobileNets as
future work.
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Table 9. ImageNet Baselines We evaluate the components of our approach. ResNet-
152 Parameters: 58.21M, FLOPs: 5587B. ResNet-18 Parameters: 13.95M, FLOPs:
883.73B. Our student has around 4x less parameters. Our model has features as input
to D and dropout on the adversarial samples.

Top-1 Top-5
Model Error[%] Error[%]

Supervised teacher (ResNet-152) 27.63 5.90
Supervised student (ResNet-18) 43.33 20.11

Our student (D with features) 33.31 11.96
+ dropout on student 32.89 11.72

Table 10. ImageNet Evaluation We evaluate two versions of our student and com-
pare with related methods. ResNet-152 Parameters: 58.21M, FLOPs: 5587B. ResNet-
50 Parameters: 37.49M, FLOPs: 2667B. Our student, ResNet-50, has around 2x less
parameters. We also include the student ResNet-18 from the evaluation in Table 9.
Our student is trained with features as input to D and dropout on the student.

Model Top-1 Error[%] Top-5 Error[%] Parameters
Supervised teacher (ResNet-152) 27.63 5.90 58.21M
Supervised student (ResNet-50) 30.30 10.61 37.49M

XNOR [41] (ResNet-18) 48.80 26.80 13.95M
Binary-Weight [41] (ResNet-18) 39.20 17.00 13.95M
L2 - Ba et al. [2] (ResNet-18) 33.28 11.86 13.95M
MobileNets [21] 29.27 10.51 4.20M
L2 - Ba et al. [2] (ResNet-50) 27.99 9.46 37.49M
Our student (ResNet-18) 32.89 11.72 13.95M
Our student (ResNet-50) 27.48 8.75 37.49M

5 Conclusion

We have presented the adversarial network compression for knowledge trans-
fer between a large model and a smaller one with limited capacity. We have
empirically shown that regularization helps the student to compete with the dis-
criminator. Finally, we show state-of-the-art performance without using labels
in an extensive evaluation of five datasets, three teacher and three student ar-
chitectures. As future work, we aim to explore adversarial schemes with more
discriminators that use intermediate feature representations, as well as, transfer-
ring our approach to different tasks such as object detection and segmentation.
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