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Abstract. In this paper we investigate extensions of Local Binary Pat-
terns (LBP), Improved Local Binary Patterns (ILBP) and Extended Lo-
cal Binary Patterns (ELBP) to colour textures via two different strate-
gies: intra-/inter-channel features and colour orderings. We experimen-
tally evaluate the proposed methods over 15 datasets of general and
biomedical colour textures. Intra- and inter-channel features from the
RGB space emerged as the best descriptors and we found that the best
accuracy was achieved by combining multi-resolution intra-channel fea-
tures with single-resolution inter-channel features.
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1 Introduction

Colour and texture, along with transparency and gloss, are among the most
important visual features of objects, materials and scenes. As a consequence,
colour and texture analysis plays a fundamental role in many computer vision
applications such as surface inspection [1–3], medical image analysis [4–7] and
object recognition [8–10]. It is generally believed that combining colour and
texture improves accuracy (at least under steady imaging conditions [11, 12]),
though it is not quite clear which is the best way to do it. Indeed this has been
subject of debate since early on, both in computer vision [11, 12] and perception
science [13].

Approaches to colour texture analysis can be roughly categorised into three
groups: parallel, sequential and integrative [14], though more involved taxonomies
have been proposed too [15]. In this paper we investigate the problem of rep-
resenting colour texture features starting from three LBP variants as grey-scale
texture descriptors. Even in the era of Deep Learning, there are good reasons
why Local Binary Patterns and related variations are worth investigating: they
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are conceptually simple, compact, easy to implement, computationally cheap –
yet very accurate. We consider two strategies to extend LBP variants to colour
textures: the combination of inter- and intra-channel features, and colour order-
ings. We also evaluate the effect of the colour space used (RGB, HSV, YUV and
YIQ) and of the spatial resolution(s) of the local neighbourhood.

2 Background: Grey-Scale LBP Variants

Local Binary Patterns variants [16–22] (also referred to as Histograms of Equiva-

lent Patterns [23]) are a well-known class of grey-scale texture descriptors. They
are particularly appreciated for their conceptual ease, low computational demand
yet high discrimination capability. Nonetheless, extensions to colour images have
received much less attention than the original, grey-scale descriptors. In this pa-
per we investigate extensions to the colour domain of Local Binary Patterns [16],
Improved Local Binary Patterns [24] and Extended Local Binary Patterns [25],
though the same methods could be easily extended to other descriptors of the
same class (see [22] for an up-to-date review).

The three methods are all based on comparing the grey-levels of the pixels in
a neighbourhood of given shape and size, but the comparison scheme is different
in the three cases (see [16, 24, 25] for details). In general, any such comparison
scheme can be regarded as a hand-designed function (also referred to as the ker-
nel function [23]), which maps a local image pattern to one visual word among a
set of pre-defined ones (dictionary). In formulas, denoted with N the neighbour-
hood, P a local image pattern (set of grey-scale values over that neighbourhood)
and f the kernel function we can write:

P :
f
−→ w; w ∈ {w1, . . . , wK}, (1)

where {w1, . . . , wK} is the dictionary. Consequently, any LBP variant identifies
with its kernel function and vice-versa, as clearly shown in [26]. The dimension
of the dictionary depends on the kernel function and the number of pixels in
the neighbourhood: standard LBP [16, 18, 19] for instance generates a dictionary
of 2n−1 words, being n the number of pixels in the neighbourhood. Image fea-
tures are the one-dimensional, orderless distribution of the visual words over the
dictionary (bag of visual words model).

Rotation-invariant versions of LBP and variants are computed by grouping
together the visual words that can be obtained from one another via a discrete
rotation of the peripheral pixels (also usually referred to as the ‘ri’ configura-
tion [16]). In this case the dimension of the (reduced) dictionary can be computed
through standard combinatorial methods [27].

3 Extensions to Colour Images

3.1 Intra- and Inter-channel Analysis

Intra- and/or inter-channel analysis are classic tools for extending texture de-
scriptors to colour images [28–30]. Intra-channel features are computed from
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each colour channel separately, inter-channel features from pairs of channels. In
both cases the resulting features are concatenated into a single vector. As for
inter-channel features, if we consider three-channel images and indicate with i, j
and k the colour channels, there are six possible combinations: ij, ik, jk, ji, ki
and kj. However, to avoid redundancy and reduce the overall number of features,
it is customary to retain only the first three [29, 30]. Figures 1 and 2 show how
to compute intra- and inter-channel features in the RGB space.

Intra- and inter-channel analysis applies to grey-scale LBP variants by replac-
ing the comparison between the grey levels with that between the intensity levels
within each colour channel and/or pairs of them, respectively. Therefore, both
intra- and inter-channel analysis multiply by three the dimension of the orig-
inal descriptor (by six when used together). Intra- and inter-channel analysis
extends LBP, ILBP and ELBP seamlessly to the colour domain. In the remain-
der we refer to these colour extensions respectively as Opponent Colour LBP
(OCLBP) [29], Improved Opponent Colour LBP (IOCLBP) [30] and Extended
Opponent Colour LBP (EOCLBP).

Fig. 1. Computing intra-channel features in the RGB space: the intensity values (circles
in the figure) are compared within each of the R, G and B channels separately (squares
in the figure)

3.2 Colour Orderings

Differently from grey-scale, colour data are multivariate, hence lack a natural
ordering. Still, higher-dimension analogues of univariate orderings can be intro-
duced by recurring to some sub- (i.e. less than total) ordering principles [31].
Herein we considered the following three types of sub-orderings in the colour
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Fig. 2. Computing inter-channel features in the RGB space: the intensity values (circles
in the figure) are compared between each of the R/G, R/B and G/B pairs of colour
channels (squares in the figure)

space: lexicographic order, order based on the colour vector norm and order based

on a reference colour [32–37]. The first is a marginal ordering (M-ordering), the
second and third are reduced (or aggregate) orderings (R-orderings) [31]. In the
remainder we use subscripts ‘lex’, ‘cvn’ and ‘rcl’ to indicate the three orderings.
Once the order is defined, the grey-scale descriptors introduced in Section 2 ex-
tend seamlessly to the colour domain. Also note that colour orderings produce
more compact descriptors than intra- and inter-channel analysis, for the number
of features is, in this case, the same as that of the original grey-scale descriptor.

Lexicographic Order The lexicographic order [32, 34] involves defining some
kind of (arbitrary) priority among the colour channels. Denoted with i, j and k

the three channels, one can for instance establish that i has higher priority than
j and j higher than k. In that case, given two colours C1 = {C1i, C1j , C1k} and
C2 = {C2i, C2j , C2k}, we shall write:

C1 ≥ C2 ⇐⇒ (C1i > C2i) ∨ [(C1i = C2i) ∧ (C1j > C2j)]∨ (2)

[(C1i = C2i) ∧ (C1j = C2j) ∧ (C1k ≥ C2k)].

For three-dimensional colour data there are 3! = 6 priority rules, and, conse-
quently, as many lexicographic orders.

Aggregate Order Based on the Colour Vector Norm This is based on
comparing the vector norm [33] of the two colours:
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C1 ≥ C2 ⇐⇒ ‖C1‖ ≥ ‖C2‖, (3)

where ‘|| · ||’ indicates the vector norm. In the remainder we shall assume that
this be the L2 norm, although other types of distance can be used as well.

Aggregate Order Based on a Reference Colour In this case the compari-
son is based on the distance from a given (and again arbitrary) reference colour
Cref [35]:

C1 ≥ C2 ⇐⇒ ‖C1 −Cref‖ ≥ ‖C2 −Cref‖. (4)

Clearly this case reduces to the order based on the colour vector norm when
Cref = {0, 0, 0}.

4 Experiments

Different strategies have been proposed to extend LBP (and variants) to colour
textures. In order to evaluate the effectiveness of the approaches described in
Section 3 and to explore which one works better in the case of colour images, we
carried out a set of supervised image classification experiments using 15 colour
texture datasets (more details on this in Section 5). We first run a group of three
experiments to determine the optimal settings regarding the colour space used
(Experiment 1), the colour orderings (Experiment 2) and the combination of
resolutions for intra- and inter-channel features (Experiment 3). To reduce the
overall computational burden we only used datasets #1 to #5 for this first group
of experiments. Finally, in the last experiment we selected the best settings and
carried out a comprehensive evaluation using all the datasets.

We computed rotation-invariant (‘ri’) features from non-interpolated pixel
neighbourhoods of radius 1px, 2px and 3px (Fig. 3) and concatenated them. In
the remainder, symbol ‘&’ will indicate concatenation; therefore we shall write,
for instance, ‘1&2&3’ to signal concatenation of the feature vectors computed at
resolution 1, 2 and 3.

Radius = 1px Radius = 2px Radius = 3px

Fig. 3. Pixel neighbourhoods corresponding to resolutions 1, 2 and 3, respectively



6 R. Bello-Cerezo et al.

The accuracy was estimated via split sample validation with stratified sam-
pling using a train ratio of 1/2, i.e.: half of the samples of each class (train set)
were used to train the classifier and the remaining half (test set) to compute
the figure of merit. This was the fraction of samples of the test set classified
correctly. Classification was based on the nearest neighbour rule with L1 (‘city-
block’) distance.

4.1 Experiment 1: Selecting the Best Colour Space for Intra- and

Inter-channel Features

This experiment aimed to determine the best colour space among RGB, HSV,
YUV and YIQ (conversion formulae from RGB available in [38]). Since HSV
separates colour into heterogeneous components (hue, saturation and value), we
also used a normalized version of this space (HSVnorm in the remainder):

Hnorm =
H − µH

σH
,

Snorm =
S − µS

σS
,

Vnorm =
V − µV

σV
.

(5)

where µ and σ indicate the average values over the input image. Normalized
versions of YUV and YIQ were also considered, but not reported in the results
owing to their poor performance. We computed both intra- and inter-channel
features at resolutions 1, 2 and 3, and concatenated the results (‘1&2&3’). We
considered the following combinations of colour spaces respectively for the intra-
and inter-channel features: RGB-RGB, HSV-HSV, HSV-RGB, HSV-HSVnorm,
HSV-YUV and HSV-YIQ (see Table 3, boldface figures).

4.2 Experiment 2: Colour Orderings Vs. Intra- and Inter-channel

Features

The objective of this experiment was to evaluate the effectiveness of intra- and
inter-channel features compared with colour orderings (Section 3.2) in the RGB
colour space, which emerged as the best one from Experiment 1. For the lexico-
graphic order we considered all the six possible combinations of priority among
the R, G and B channels, though for the sake of simplicity we only report (see
Table 4) the results of the combination that attained the best accuracy in the
majority of the cases (this was G ≻ R ≻ B). For the order based on a refer-
ence colour we considered three possible references, the same three used in [36]
since they were the best among the eight vertices of the RGB colour cube: white
(1,1,1), green (0,1,0) and magenta (1,0,1), and the first gave the best results (see
Table 4). As in Experiment 1, the image features were computed at resolution
1, 2 and 3 and the resulting vectors concatenated (‘1&2&3’).
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Table 1. Summary table of the generic colour texture datasets used in the experiments

ID Name
No. of
classes

No. of samples
per class

Size
(px×px)

Sample images

1 KTH-TIPS 10 81 200×200

2 KTH-TIPS2b 11 432 200×200

3 Outex-00013 68 20 128×128

4 Outex-00014 68 60 128×128

5 PlantLeaves 20 60 128×128

6 CUReT 61 92 128×128

7 ForestSpecies 112 20 768×768

8 NewBarkTex 6 272 64×64

4.3 Experiment 3: Selecting Optimal Resolutions for Intra- and

Inter-channel Features

Since the use of intra- and inter-channel analysis increased by six the number
of features of grey-scale descriptors, in this experiment we investigated how to
reduce the overall number of features – this way generating reasonably compact
descriptors – by selecting appropriate resolutions for intra- and inter-channel
features. Specifically, we used three concatenated resolutions (‘1&2&3’) for intra-
channel features and one (‘1’, ‘2’ or ‘3’) or two concatenated resolutions (‘1&2’,
‘1&3’ or ‘2&3’) for inter-channel features.

4.4 Experiment 4: Overall Evaluation with Optimised Settings

In this last experiment we computed the classification accuracy over all the 15
datasets described in Section 5 using the settings that emerged as optimal from
the previous experiments. For calibration purposes we also included five pre-
trained convolutional neural network models – specifically: three residual net-
works (ResNet-50, ResNet-101 and ResNet-152 [39]) and two VGG ‘very deep’
models (VGG-VeryDeep-16 and VGG-VeryDeep-19 [40]). Image features in this
case were the L1 normalised output of the last fully-connected layer (usually
referred to as the ‘FC’ configuration [41, 42]). The results are reported in Ta-
bles 6– 7.

Table 3 summarises the results of Experiment 1. As can be seen, the RGB-
RGB combination for intra- and inter-channel features emerged as the best op-
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Table 2. Summary table of the biomedical textures used in the experiments

ID Name
No. of
classes

No. of samples
per class

Size
(px×px)

Sample images

9 BioMediTechRPE 4 150–949 480×480

10 BreakHis 40× 2 625–1370 460×460

11 BreakHis 100× 2 644–1437 460×460

12 BreakHis 200× 2 623–1390 460×460

13 BreakHis 400× 2 588–1232 460×460

14 Epistroma 2 551–825 Variable

15 Kather 8 625 150×150

tion in seven datasets, followed by HSV-HSV (five datasets) and HSV-RGB (four
datasets).

5 Datasets

For the experimental evaluation we considered eight datasets of generic colour
textures and seven of biomedical textures as detailed in Sections 5.1– 5.2. The
main characteristics of each dataset are also summarised in Tables 1– 2.

5.1 Generic Colour Textures

#1 – #2: KTH-TIPS [43, 44] and KTH-TIPS2b [45, 44]. Generic materials as
bread, cotton, cracker, linen, orange peel, sandpaper, sponge or styrofoam, ac-
quired at nine scales, three viewpoints and three different illuminants.

#3 – #4: Outex-00013 [16, 46] and Outex-00014 [16, 46]. Generic materials such
as carpet, chips, flakes, granite, paper, pasta or wallpaper. Images from Outex-
00013 were acquired under invariable imaging conditions and those from Outex-
00014 under three different illumination conditions.

#5, #7 – #8: PlantLeaves [47], ForestSpecies [48, 49] and NewBarkTex [50, 51].
Images from different species of plants, trees and bark acquired under controlled
and steady imaging conditions.

#6: CUReT [52]. A reduced version of the Columbia-Utrecht Reflectance and
Texture database maintained by the Visual Geometry Group, University of Ox-
ford, United Kingdom [53], containing samples of generic materials.
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Table 3. Results of Experiment 1: selecting the best colour space for intra- and inter-
channel features. Boldface text indicates the best combination descriptor + colour
spaces; framed text the overall best accuracy by dataset. Although the KTH-TIPS and
KTH-TIPS2b datasets saw improvements with HSV, all other datasets performed best
by remaining in RGB space. Classifier was 1-NN (L1)

Colour space Datasets

Descriptor-[1&2&3] Intra-Inter #1 #2 #3 #4 #5

OCLBP RGB-RGB 95.2 97.8 90.9 91.5 76.9

OCLBP HSV-HSV 96.6 97.5 91.9 86.7 71.0

OCLBP HSV-RGB 96.0 98.4 90.4 90.3 73.7
OCLBP HSV-HSVnorm 96.0 97.8 84.9 84.5 73.8
OCLBP HSV-YUV 92.5 96.2 86.5 84.8 72.6
OCLBP HSV-YIQ 92.4 96.3 86.6 85.5 74.0

IOCLBP RGB-RGB 96.2 98.5 91.0 91.9 77.7

IOCLBP HSV-HSV 97.4 98.2 91.5 87.4 71.9

IOCLBP HSV-RGB 96.6 98.7 89.4 89.8 73.2

IOCLBP HSV-HSVnorm 96.4 98.1 84.5 85.2 74.0
IOCLBP HSV-YUV 94.2 97.5 87.9 85.9 73.0
IOCLBP HSV-YIQ 94.2 97.4 87.8 86.8 74.8

EOCLBP RGB-RGB 95.3 98.2 91.5 92.0 77.0

EOCLBP HSV-HSV 97.2 98.5 90.9 87.0 70.7

EOCLBP HSV-RGB 97.2 98.7 90.4 89.2 70.6

EOCLBP HSV-HSVnorm 96.9 98.2 85.6 85.0 71.7
EOCLBP HSV-YUV 96.4 98.1 87.3 85.6 71.0
EOCLBP HSV-YIQ 96.0 98.0 87.2 85.9 71.7

Baseline

LBP GREY 94.2 93.5 80.9 83.7 73.8
ILBP GREY 95.4 95.1 85.5 88.6 76.9

ELBP GREY 94.5 94.5 84.6 87.4 78.3

5.2 Biomedical Textures

The following databases were acquired through digital microscopy under fixed
and reproducible conditions, and are therefore intrinsically different from those
presented in the preceding section.

#9: BioMediTechRPE [54, 55]. Retinal pigment epithelium (RPE) cells from
different stages of maturation.

#10 – #13: BreakHis [56, 57]. Histological images from benign/malignant breast
cancer tissue. Each image was taken under four magnification factors (40×,
100×, 200× and 400×), and we considered each factor as making up a different
dataset (see Tab. 2).

#14 – #15: Epistroma [58, 5] and Kather [59–61]. Histological images from
colorectal cancer tissue representing different tissue sub-types.
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Table 4. Results of Experiment 2: colour orderings vs. intra- and inter-channel fea-
tures. Boldface text indicates, for each dataset, the best accuracy by descriptor +
colour ordering; framed text the overall best accuracy by dataset. Colour priority for
lexicographic order (‘lex’) was G ≻ R ≻ B, distance for colour vector norm (‘cvn’) was
L2 and reference colour for ‘rcl’ was white (1,1,1). The features were computed on the
RGB space. The significant reduction in dimensionality offered by the colour orderings
does not lead to any improvement

Datasets No. of

Descriptor-[1&2&3] #1 #2 #3 #4 #5 features

LBPlex 94.3 92.3 79.8 82.9 65.2 108
LBPcvn 94.3 92.3 78.5 81.3 69.9 108
LBPrcl 94.0 92.1 78.6 80.2 71.9 108

ILBPlex 95.0 95.7 84.6 87.8 67.6 213
ILBPcvn 94.9 95.5 83.6 87.5 70.3 213
ILBPrcl 94.7 95.3 83.9 88.2 73.4 213

ELBPlex 94.3 94.2 84.5 86.1 66.7 215
ELBPcvn 94.7 94.1 85.6 86.3 73.7 215
ELBPrcl 94.6 93.8 84.6 86.0 77.3 215

Baseline

LBP 94.2 93.5 80.9 83.7 73.8 108
ILBP 95.4 95.1 85.5 88.6 76.9 213

ELBP 94.5 94.5 84.6 87.4 78.3 215

OCLBP 95.2 97.8 90.9 91.5 76.9 648

IOCLBP 96.2 98.5 91.0 91.9 77.7 1287

EOCLBP 95.3 98.2 91.5 92.0 77.0 1299

6 Results and Discussion

The results of Experiment 2 (Table 4) show that in most cases intra- and inter-
channel features from the RGB space improved the accuracy of the original,
grey-scale descriptors by a good margin. By contrast, no clear advantage emerged
from using colour orderings as an alternative to grey-scale values.

Experiment 3 indicated that the best accuracy was achieved by concatenat-
ing multi-resolution intra-channel features and single-resolution inter-channel
features. In fact, adding more than one inter-channel resolution degraded the
performance in the majority of cases, as clearly shown in Table 5. The results
were however inconclusive as to which resolution (‘1’, ‘2’ or ‘3’) should be used.

The comparison between LBP variants and pre-trained convolutional net-
works (Experiment 4, Tables 6 and 7) showed nearly perfectly split results, with
the former achieving the best performance in seven datasets out of 15 and the
reverse occurring in the other eight. Convolutional models seemed better at clas-
sifying textures with higher intra-class variability (as a consequence of texture
non-stationariness and/or changes in the imaging conditions), as for instance in
datasets #1, #2 and #7 (see Section 5.1). Conversely, homogeneous textures ac-
quired under steady imaging conditions (most of the biomedical datasets) were
still better classified by LBP variants. This finding generally agrees with those
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Table 5. Experiment 3: best combination of resolutions for intra- and inter-channel
features. Boldface text indicates, for each dataset, the best combination descriptor +
resolutions used for computing the inter-channel features; framed text the overall accu-
racy by dataset. The features were computed on the RGB space. In general, strongest
performance is realized by limiting the number of resolutions associated with inter-
channel features. That is, the added information present in multiple inter-channels is
more than offset by the decrease in classification performance due to the increase in
feature dimensionality

Datasets No. of

Descriptor-[1&2&3]intra #1 #2 #3 #4 #5 features

OCLBP-[1]inter 96.6 98.3 91.3 91.6 78.2 432
OCLBP-[2]inter 96.2 98.1 91.7 92.1 78.6 432
OCLBP-[3]inter 95.9 98.1 91.9 92.5 78.8 432
OCLBP-[1&2]inter 96.1 98.1 91.3 91.7 77.2 540
OCLBP-[1&3]inter 96.0 98.1 91.6 92.3 77.4 540
OCLBP-[2&3]inter 95.8 98.0 91.7 92.4 77.2 540

IOCLBP-[1]inter 97.1 98.7 92.2 92.5 80.2 855

IOCLBP-[2]inter 97.1 98.7 92.3 92.6 79.7 855

IOCLBP-[3]inter 96.8 98.6 92.9 93.0 79.4 855

IOCLBP-[1&2]inter 96.8 98.6 91.4 92.0 78.7 1071
IOCLBP-[1&3]inter 96.6 98.6 91.9 92.3 78.6 1071
IOCLBP-[2&3]inter 96.4 98.5 91.7 92.2 78.5 1071

EOCLBP-[1]inter 96.8 98.4 91.7 91.4 79.5 759
EOCLBP-[2]inter 96.7 98.4 91.8 91.5 79.5 759
EOCLBP-[3]inter 96.6 98.4 91.9 91.5 79.4 759
EOCLBP-[1&2]inter 96.5 98.5 91.7 91.3 78.8 867
EOCLBP-[1&3]inter 96.5 98.5 91.8 91.4 78.8 867
EOCLBP-[2&3]inter 96.5 98.5 91.9 91.5 78.8 867

Baseline

LBP 94.2 93.5 80.9 83.7 73.8 108
ILBP 95.4 95.1 85.5 88.6 76.9 213
ELBP 94.5 94.5 84.6 87.4 78.3 215

OCLBP 95.2 97.8 90.9 91.5 76.9 648
IOCLBP 96.2 98.5 91.0 91.9 77.7 1287
EOCLBP 95.3 98.2 91.5 92.0 77.0 1299

obtained in previous studies [62]. Pre-trained convolutional networks, however,
achieved this result by employing at least twice as many features than LBP
variants.

7 Conclusions

In this work we have investigated two strategies for extending LBP variants to
the colour domain: intra- and inter-channel features on the one hand and colour
orderings on the other. Colour orderings did not prove particularly effective;
however, intra- and inter-channel features improved the accuracy of the original,
grey-scale descriptors in virtually all the cases. The best results were obtained
by combining multi-resolution intra-channel features with single-resolution inter-
channel features, and this represents a novel finding. In future works we plan
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Table 6. Results of Experiment 4: overall evaluation with optimised settings (datasets
#1 to #8). Boldface text indicates, for each dataset, the best combination descriptor
+ resolutions used for computing the inter-channel features; framed text the overall
best accuracy by dataset

Descriptor- Generic textures No. of

[1&2&3]intra 1 2 3 4 5 6 7 8 features

OCLBP-[1]inter 96.6 98.3 91.3 91.6 78.2 97.5 76.0 82.9 432
OCLBP-[2]inter 96.2 98.1 91.7 92.1 78.6 97.5 76.1 82.7 432
OCLBP-[3]inter 95.9 98.1 91.9 92.5 78.8 97.7 76.4 83.0 432

IOCLBP-[1]inter 97.1 98.7 92.2 92.5 80.2 98.2 81.9 84.5 855
IOCLBP-[2]inter 97.1 98.7 92.3 92.6 79.7 98.0 82.1 83.8 855

IOCLBP-[3]inter 96.8 98.6 92.9 93.0 79.4 98.1 82.1 83.2 855

EOCLBP-[1]inter 96.8 98.4 91.7 91.4 79.5 98.1 83.0 84.8 759
EOCLBP-[2]inter 96.7 98.4 91.8 91.5 79.5 98.1 83.1 84.8 759
EOCLBP-[3]inter 96.6 98.4 91.9 91.5 79.4 98.0 83.1 84.4 759

Baseline

OCLBP 95.2 97.8 90.9 91.5 76.9 97.4 74.8 79.9 648
IOCLBP 96.2 98.5 91.0 91.9 77.7 97.7 79.9 80.2 1287
EOCLBP 95.3 98.2 91.5 92.0 77.0 97.6 77.3 79.1 1299

CNNs

VGG-VD-16-FC 99.4 99.5 84.3 83.5 77.4 97.0 85.6 79.1 4096
VGG-VD-19-FC 99.4 99.4 83.8 82.8 78.0 96.9 82.8 81.6 4096

ResNet-50-FC 99.6 99.7 87.2 86.0 86.6 98.5 93.0 90.7 2048

ResNet-101-FC 99.9 99.7 86.4 85.5 82.1 98.6 92.8 90.5 2048

ResNet-152-FC 99.8 99.8 84.8 84.7 83.9 98.5 91.8 90.9 2048

expand the study to consider more LBP variants [22] and different strategies for
compacting the feature vectors [63].
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