This ECCV 2018 workshop paper, provided here by the Computer Vision Foundation, is the author-created
version. The content of this paper is identical to the content of the officially published ECCV 2018
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccv

GA-based Filter Selection for Representation in
Convolutional Neural Networks

Junbong Kim!, Minki Lee!, Jongeun Choi?, and Kisung Seo®*,
*Corresponding author

! Department of Electronic Engineering, Seokyeong University, Seoul, Korea
2 School of Mechanical Engineering, Yonsei University, Seoul, Korea
tpeprrwq@skuniv.ac.kr, perpetmon@skuniv.ac.kr, jongeunchoi@yonsei.ac.kr,
ksseo@skuniv.ac.kr

Abstract. One of the deep learning models, a convolutional neural net-
work (CNN) has been very successful in a variety of computer vision
tasks. Features of a CNN are automatically generated, however, they
can be further optimized since they often require large scale parallel op-
erations and there exist the possibility of overlapping redundant features.
The aim of this paper is to use feature selection via evolutionary algo-
rithms to remove the irrelevant deep features. This will minimize the
computational complexity and the amount of overfitting while maintain-
ing a good quality of representation. We demonstrate the improvement
of the filter representation by performing experiments on three data sets
of CIFAR10, metal surface defects, and variation of MNIST and by ana-
lyzing the classification performance as well as the variance of the filter.
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1 Introduction

Recent years, the deep learning technique such as convolutional neural networks
(CNNs) is widely utilized for image recognition [8]. In general, a CNN [9] is
known to be powerful in automatic feature extraction and it does not require
manual feature engineering. The manual design of the feature representation is
not adaptive to the data and is dependent on the specific design choices. Deep
convolutional neural networks (DCNN) [7, 14,16, 4] has a hierarchical structure
that attempts to learn representations of input data with multiple levels of ab-
straction automatically. As the deep learning network grows deeper, the impor-
tance of feature representation in the computer vision is increasing [1]. CNN
based features often rely on computationally expensive deep models, which re-
quires high computational complexity for numerous applications. There is a
strong need for new scalable and efficient approaches that can cope with this
explosion of dimensionality [17]. Therefore, there is a growing need for feature
descriptors that are fast to compute, memory efficient, and yet exhibiting good
discriminability and robustness with respect to the input feature space.
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In this paper, we propose an approach to refine the filter expression as well as
computational expense. In particular, an evolutionary algorithm (e.g., a genetic
algorithm (GA) [2]) will make a selection of the filters that are automatically
designed by a CNN. Because a CNN has a large number of filters, instead of
expressing the selected filters as genes, we try to improve the efficiency of ge-
netic computation by expressing the filters as genes to be deleted in order to
reduce the size of the genes. We represent genotypes and phenotypes differently
and implement them through transformations. We use enough data to train the
CNN network that consists of six layers (three convolutional layers and three
pooling layers), and reconstruct the filters of each layer of the learned network
through evolutionary computation. We then optimize the reconstruction by cal-
culating the fitness using the test data. The reduction rate of the filters is set
to 15.6% and 31.3% of the total filters, and the classification accuracy perfor-
mance, (ACC) is used for performing evolutionary calculation of a generation.
In addition, we observe the improvement of the performance by performing ad-
ditional learning on the reduced CNN obtained from the final generation. We
demonstrate the quality of the filter representation by performing experiments
on CIFAR10, MNIST variations, and surface defect data and by analyzing the
variance of the filters as well as the classification accuracy performance.

2 Literature survey

Convolutional Feature representations and/or selections are closely related to
CNN network quantization and efficient CNN architectures. A number of efforts
have been made in this direction, such as feature selection [1], compact binary
features [11], CNN network compressions [3, 6], and optimization of CNN archi-
tectures [13,18, 15]. Following works adopt fine-tuned strategies to further im-
prove the discriminative power of the descriptors. First, various masking schemes
are applied to select a representative subset of local convolutional features and
remove a large number of redundant features from a feature map to achieve
competitive retrieval performance [1]. Quantized CNN is proposed to simultane-
ously speed-up the computation and reduce the storage and memory overhead
of CNN models. Both filter kernels in convolutional layers and weighting matri-
ces in fully-connected layers are quantized, aiming at minimizing the estimation
error of each layer’s response [17].

Compression techniques to reduce the network size without affecting their ac-
curacy are another popular approaches. Deep compression, a three stage pipeline:
pruning, trained quantization and Huffman coding that work together to re-
duce the storage requirement of neural networks by 35 to 49x without affect-
ing their accuracy, is introduced [3]. In a similar way, SqueezeNet [6] achieves
AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally,
with model compression techniques, they are able to compress SqueezeNet to
less than 0.5MB.
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Designing CNN architectures automatically is also coupled with feature rep-
resentations. Recently, some meta-heuristic algorithms, such as genetic algorithm
(GA) and genetic programming (GP), have been used to optimize CNNs.

GA based optimization of CNN structures with the number and size of filters,
connection between consecutive layers, and activation functions of each layer is
introduced [13]. Long length of chromosome is adopted to cover above variables
and showed not much improved performance results. The other GA based ap-
proach is a new encoding method to represent complex convolutional layers in a
fixed-length binary string. Many popular network structures can be represented
using the proposed encoding scheme. Examples include VGGNet [14], ResNet
[4], and a modified variant of DenseNet [5]. However, a large fraction of network
structures are still unexplored and the currently available main results are at
the averaged levels and so they still require to be improved.

A Cartesian genetic programming (CGP) [12] based method is adopted for
a CNN structure optimization with highly functional modules, such as convo-
lutional blocks and tensor concatenation, as the node functions in CGP [15].
The CNN structure and connectivity represented by the CGP encoding method
are optimized to maximize the validation accuracy. The proposed method can
be used to automatically find the competitive CNN architecture compared with
state-of-the-art models.

Evolutionary algorithm based approaches on CNN design have the emphasis
that is on optimizing the external structure of the network, which is far from
the expression of the filter.

3 Optimization of CNN representation

3.1 CNN and Representation Problems

One of the most related variables to the CNN representation are convolution
filter weights. Filters that are automatically generated through learning include
various types of filters and are responsible for feature extraction across multiple
stages through the hierarchical forward network. Nevertheless, the filters used in
previous studies may contain redundant filters. In this study, we select the filters
that significantly contribute to the image recognition through the evolutionary
computation of the fully learned CNN filters. This reduces the overall number
of filters and refines the filter group. The methodology differs from the existing
pruning technique [10] in that it chooses the appropriate filters for the situation
(or environment) using evolutionary optimization, rather than simply choosing
the importance of the filter based on weight values. In other words, our evolu-
tionary approach is more focused on relational combination set of filters among
convolutional layers rather than separated operations in each layer.

3.2 Evolutionary Algorithm

Evolutionary computation consists of gene expression, gene generation, fitness
evaluation, selection, and genetic computation. The process of GA is as follows.
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Firstly, each chromosome composed of strings is randomly generated. Then, the
candidate solution obtained by interpreting each object is evaluated by a fitness
function. Then, the entities to participate in the genetic operation are selected by
the given selection method. Perform genetic calculations (mating, mutation) on
selected entities. The entire process is repeated until the termination condition
is satisfied. The mating operator in GA is performed by replacing a portion of
the parent’s string at an arbitrary point.

Unlike optimization by general evolutionary computation, the optimization of
CNN requires a long computation time for repetition of generations because the
evaluation process of an object includes the CNN test. That is, several hundred
epochs of test process should be performed to evaluate one entity. In this study,
we choose a method to reduce the computation volume by applying only the
test procedure to the evaluation of the changed object first by separating the
learning and the test. The overall GA structure for removing redundant filters
in a CNN is summarized as shown in Algorithm 1.

Algorithm 1 Evolutionary optimization algorithm for CNN filters

1: CNN training for train dataset
2:t+0

3: initialize P(t) > individuals for filter selection
4: procedure EVALUATE P(t)

5: CNN test for test dataset

6: calculate accuracy

7: while not termination-condition do
8: t—t+1

9: select P(t) from P(t — 1)
10: crossover and mutation P(t)
11: procedure EVALUATE P(t)
12: CNN test for test dataset
13: calculate accuracy

3.3 Evolutionary Selection of CNN filters

Including all filters in the genes for selection is very inefficient for genetic calcula-
tions because small CNNs consist of dozens of filters per layer. Therefore, we set
a certain percentage (15.6% and 31.3%) to be deleted from the whole filter, and
then represent filters to be deleted as genes since their size is relatively small.
This is illustrated in Figure 1. The gene number in genotype means the filter
number to be deleted from the layer and the gray filters are shown to be deleted.
Duplicate numbers are treated as a single one, and 0 represents a filter not to
be deleted. The phenotype is remaining(or selected) filters which are used for
evaluations.

In order to verify the proposed scheme, a filter selection procedure is per-
formed on a basic network with a relatively simple CNN structure as shown in
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GA Chromosome for Convolution Filter Selection in CNN
Conv Layer 1 Conv Layer 2 Conv Layer 3
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Deleted Filters - Genotype
i tvp C1: 32 Filters (Delete 5 Filters) 64

" C2: 64 Filters (Delete 10 Filters)
I:l Selected Filters - Phenotype €3 : 64 Filters (Delete 10 Filters)

Fig. 1. GA for deleting redundant filters in a CNN a case of 15.6% deletion.

Table 1. Parameters of CNN model.

Layer Filters Filter size Stride Pad
Convl 32  2x2x32 1 0

Pooll 2x2 2 0
Conv2 64 2x2x64 1 0
Pool2 2x2 2 0
Conv3d 64 2x2x64 1 0
Pool3 2%x2 2 0

Fe 128 1x1x128 1 0

Figure 2. We have trained enough a network consisting of 6 layers (3 convolu-
tional layers, 3 pooling layers) by using CIFAR10, surface defect data, MNIST
Variations. We then apply the GA evolutionary selection to the automatically
generated filters of each convolution layer.

4 Experiments and Analysis

4.1 Experimental Environments

The experimental method is as follows. We use a CNN to express the filters
that we learned about the data as genes. We then evolve the filters with GA
to reduce the network size and improve the filters and performance similarly
prior to reducing the network. Experiments were performed on the GTX-1080Ti
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Fig. 2. CNN model structure

GPU for CIFAR10, metal exterior defect data, and modified MNIST data. The
length of the binary string gene was 25 and 50, and the number of individuals
was 50, and a total of 20 generations were performed for GA. The probability
of crossing was set to 0.85, and the probability of mutation was set to 0.2. This
is to facilitate generation of a new structure because of its long gene length.
For CIFARI0, learning time per a candidate(or individual) solution took 3-4
minutes, and the total GA evolution process took about 48 hours. The learning
time per a candidate for the metal exterior defects data took about 2-3 minutes,
and the whole GA evolution process took about 36 hours. For MNIST variations,
the learning time per a candidate took 3-4 minutes, and the entire GA evolution
process took about 48 hours. The specific gene expression is as follows. The
first group is the convolution C1, the second group is the three convolutions
in C3, and the third group is the collection of filter numbers to be removed in
C3. Gene length consists of gene 25 (5 + 10 + 10) and gene 50 (10 + 20 +
20) as shownbelow. The specific procedure is shown in Algorithm 2. The GA
parameters are listed in Table 2.

Algorithm 2

: Store network parameters after training a CNN

Input learned network parameters to GA

Select the filter on each candidate according to the GA performance

Fitness calculation (i.e., ACC by net CNN propagation using only reduced filters)
Re-train the CNN by lowering the learning rate of reduced networks by GA

4.2 Experimental Results

Results for Reduction Rate of 15.6%. Table 3 shows the results of exper-
iments with a reduction ratio of 15.6% ((5 + 10 + 10) / (32+64+64)). For the



GA-based representation selection in CNNs 7

Table 2. GA parameters

Number of generations 20
Population size 50
Selection Tournament (size=7)
Crossover 0.85
Mutation 0.2

Table 3. GA-based filtering reduction (15.6% reduction rate)

ACC Original GA Filter GA Filter Retrain Retrain  after
Selection Selection after GA GA Filter Se-
(initial (final gen) Filter Se- lection (epoch
gen) lection 500)
(epoch
100)
CIFAR-10  64.60% 54.57% 57.94% 62.90% 63.55% (98.3%)
Surface 86.91% 84.00% 85.19% 86.40% 86.85% (99.9%)
Defect
MNIST 94.13% 92.75% 92.78% 93.45% 93.48% (99.3%)
Variations

CIFAR-10, the ACC performance that was learned and tested with CNN shown
in Figure 2 was 64.6%, and the result after randomly selecting and removing the
filters of each layer within 15.6% was down to 54.57%.

Through the GA evolution calculation, the best performance after 20th gen-
eration is 57.94%. The performance of the re-learning of the evolved network
with this reduced number of filters was very close to 98.3% of the original net-
work ACC performance, from 500 epochs to ACC of 63.55%, while the network
filter was reduced to 15.6% of the reduction rate. As for the surface defect data,
the re-learning result after filter reduction is 86.85% ACC, which is equivalent
t0 99.9% of the original network performance of 86.91%. For the MNIST varia-
tion data, the ACC performance of the reduced network is 93.48%, 99.3% of the
original ACC performance 94.13%. Our successful results show that the number
of network filters is reduced by 15.6% while the performance is maintained at
98%-99% of the original deep learning network. In addition, the proposed ap-
proach is meaningful in the sense that it is a process of selecting filters that are
efficient for representation rather than simple compression.

Results for Reduction Rate of 31.3%. The results of the second experiment
with a reduction of 31.3%((10 + 20 + 20)/(32464+64)). are shown in Table
4. For the CIFAR-10, the ACC performance that we learned and tested with
CNN shown in Figure 2 is 64.6%, where the results are reduced to 47.33% after
randomly selecting and removing the filters of each layer by 31.3%.

Through the GA evolution computation, the performance of the best af-
ter 20th generation is 53.74%. The ACC performance of the re-learning of the
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Table 4. GA-based filtering reduction (31.3% reduction rate)

ACC Original GA Filter GA Filter Retrain Retrain  after
Selection Selection after GA GA Filter Se-
(initial (final gen) Filter Se- lection (epoch
gen) lection 500)
(epoch
100)
CIFAR-10  64.60% 47.33% 53.74% 59.65% 60.33% (93.4%)
Surface 86.91% 73.02% 78.37% 85.73% 85.74% (98.7%)
Defect
MNIST 94.13% 87.94% 90.49% 92.12% 92.55% (98.3%)
Variations

evolved network with the reduced number of filters was 60.33% at 500 epochs,
which was 93.4% of the original network performance, which was somewhat
lower than 15.6% at the reduction rate. Instead, the number of filters in the net-
work has been reduced to 31.3%. As for the surface defect data, 85.74% of the
re-learning result after filter reduction is almost equal to 98.7% of the original
network performance 86.91%. For MNIST variation data, the performance of the
reduced network is 92.55%, which is 98.3% of the original 94.13%. The successful
results show that the number of network filters is reduced by 31.3% while the
performance is maintained at 93%-98% of the original network performance.

Tables 5 and 6 show the comparisons of the spatial re-learning of CNNs and
GA evolution (15.6% reduction) for CIFAR-10 and surface defect data, respec-
tively, in each activation map of the first convolution layer. The large variance
of the each pixel means that the recognition of the object in the activation map
is more pronounced. For the 10 classes of CIFAR-10, we can clearly see that the
variance values after GA evolution and re-learning, increased by an average of
12%-13%. In CIFAR-10, there is little difference between epoch 100 and epoch
500. Surface defects are classified into four types of defects: an average increase
of 6.3% in the epoch 100 and an increase of 11% in the epoch 500. In sum-
mary, we observed the mechanism of our approach that is the GA-based filter
reduction for complexity and overfitting reduction, has been well compensated
by re-training and resulted in the increased spatial variance of the activation
map in the remaining filters.

5 Conclusions

In this paper, we have proposed a procedure to remove the existing filters in order
to reduce the computational complexity while maintaining the ACC performance
by utilizing a carefully designed GA. In particular, we formulate our problem
as selecting filters to be removed to reduce the complexity in GA. Our results
of three different data sets (CIFAR10, metal surface defects, and variation of
MNIST) show that we have successfully remove filters with weak representation
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Table 5. Variance of the activation map on the first convolutional layer CIFAR-10

Average Original Retrain after Retrain after
Deviations GA Filter Se- GA Filter Se-
lection (epoch lection (epoch
CIFAR-10 100) 500)
Class
Airplane 816.6 919.2 (12.6%) 918.2 (12.4%)
Automobile 1166.3 1313.6 (12.6%)  1312.0 (12.5%)
Bird 717.8 809.2 (12.7%) 808.3 (12.6%)
Cat 1042.1 11785 (13%) 1176.8 (13%)
Deer 626.9 707.1 (12.8%) 707.1 (12.8%)
Dog 1090.4 12341 (13.1%)  1232.4 (13%)
Frog 713.0 805.4 (13%) 804.4 (12.8%)
Horse 1076.6 1217.4 (13%) 1215.8 (12.9%)
Ship 965.5 1088.7 (12.8%) 1087.3 (12.6%)
Truck 12255 1381.1 (12.7%)  1379.4 (12.6%)

Table 6. Variance of the activation map on the first convolutional layer Surface Defect

Average Original Retrain  after Retrain  after

Deviations GA Filter Se- GA Filter Se-
lection (epoch lection (epoch

Surface Defect 100) 500)

Class

Stain 1555.7 1653.2 (6.3%) 1733.6 (11.4%)

Normal 380.8 404.8 (6.3%) 424.1 (11.4%)

Scratch 554.4 589.3 (6.3%) 616.6 (11.2%)

Stamped 510.3 542.3 (6.3%) 568.4 (11.4%)

and retain filters with strong representation. Our approach can be applied to
different deep leaning architectures in order to suppress the detrimental effect of
overfitting and computational complexity. Further study will aim at refinement of
feature selection for better representation using advanced evolutionary algorithm
and improvement of computation costs by integrating compression techniques.
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