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Abstract. Feature descriptor extraction lies at the core of many com-
puter vision tasks including image retrieval and registration. In this pa-
per, we present an active learning method for extracting efficient features
to be used in matching image patches. We train a Siamese deep neural
network by optimizing a triplet loss function. We develop a more efficient
and faster training procedure compared to the state-of-the-art methods
by increasing difficulty during batch training. We achieve this by adjust-
ing the margin in the loss and picking harder samples over time. The
experiments are carried out on Photo Tourism dataset. The results show
a significant improvement on matching performance and faster conver-
gence in training.
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1 Introduction

Extraction of feature descriptors lies at the core of many computer vision tasks.
There exists a tremendous amount of work to represent image patches and match
them across images. Initial studies included hand-crafted features such as SIFT
[8], SURF[3] and ORB[9]. Recently, with the rise in deep neural network meth-
ods, learned features are developed and introduced as a more efficient alternative
to the hand-crafted features.

Recent work on learned feature representation focus on formulating the loss
function or designing neural network architectures. However, training for feature
learning is challenging since it heavily depends on the selected matching/non-
matching pairs and the initialization. In this paper, we present an active learning
procedure that increases the difficulty of batch training over time. We achieve
this by (i) increasing the margin between the similarities of matched and non-
matched pairs in the loss function and (ii) picking harder sample pairs over
time. Similar to a kid learning pattern matching starting from easier primitive
shapes, we start batch training by feeding samples with low loss values that are
easily detected as matching or non-matching with our current model. Gradually
we increase the difficulty of patterns presented while expecting to see a better
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separation between examples. Thus, over time we add harder samples with higher
loss values, while increasing the margin between distances of matching and non-
matching pairs in our loss function. We demonstrate the use of our technique for
matching image patches in Photo Tourism dataset [16]. The experiments show a
significant improvement in performance and a faster convergence rate compared
to the state-of-the-art learning-based features. Our method provides more robust
features with a significant speed up in training.

1.1 Existing Work

In deep feature learning, final performance of the feature matching is highly
dependent on sample selection. In order to increase performance of the model,
learning should be supervised. As an obvious example, a feature representation
that is learned by training with matching samples only ends up having a constant
function, in contrast a representation coming from a training with non-matching
samples only has a scattered range.

The importance of selecting a 1 : 1 match and non-match ratio during train-
ing was emphasized in [7, 17]. Zeng et al. [19] stated that they accumulate
training samples in a reservoir and generate batches online without violating
1 : 1 ratio constraint. Similarly, Balntas et al. [2] presented triplet-loss as a way
of enabling a totally randomized batch sampling. Since triplets consist of two
matching samples and a non-matching sample, it already satisfies 1 : 1 ratio
between matching and non matching pairs. However, these approaches suffer
from incorrect gradient estimates due to batches being dominated by samples
close to zero loss. In order to tackle this problem, authors in [14, 10] proposed
to discard training samples with zero loss. This approach suffers from low sam-
ple noise assumption. Discarding such samples causes overestimated gradients,
making the training sensitive to outliers. Hence it slows down the training and
prevents convergence to a local minimum. In order to solve this issue, instead
of discarding training samples directly, it is more convenient to select samples
actively to ensure convergence. Simo et al. [10] used more matching pairs in the
beginning of training and increase the number of non-matches in each batch as
the training progress. Therefore, their method learns boundaries after determin-
ing cluster centers. Increasing difficulty was structured further by authors in [1].
Their technique involved selecting samples based on their discriminative scores
on a state-of-the-art model. Although these methods aim to increase difficulty in
training by actively selecting samples, they ignore the effect of the loss function
in learning the feature space. The non-match distance, namely margin, for both
pairwise and triplet loss in all these scenarios is a constant that is cross-validated
across random trials. In this approach, after certain number of iterations learned
features do not change since most of the training samples already satisfy the con-
dition. Hence, a better separation between clusters is omitted. In this work we
propose to use an active objective that adjusts the margin (correlated with the
intra-class distance) gradually to ensure convergence to better local optimum.

In order to address these drawbacks we propose an active training procedure
for feature learning. We aim to achieve better local minimum with the following
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contributions (i) by actively increasing difficulty of the training with a sequence
of loss functions that converge to a local optimum and (ii) by an active sample
batch selection based on descriptive scores to increase difficulty of the training
over time. We build a deep descriptor map that finds an embedding in a lower
dimensional Euclidean space where clusters are separable. We evaluate the per-
formance of our model by using a publicly available dataset to compare with the
literature.

2 Method

We propose a curriculum for the training session and increase difficulty of the
training over time. We increase difficulty by adjusting the loss function and
picking batches during training. Before discussing our contributions, we first
present the problem formulation and notation:

Preliminaries / Notation

Given a set of clusters {D1,D2, · · · ,Dk} = D, with corresponding distributions
pDi , in feature learning the aim is to learn a mapping f that has a range where
each cluster is separable in the range space. Let fθ : ❘N×N → ❘

M be the mapping
from image domain to the feature domain parameterized by θ with N2 >> M
and d be a distance metric in range. Feature map tries to achieve the following:

d(fθ(a), fθ(p)) < d(fθ(a), fθ(n))

∀i, j 6= i and ∀a, p ∼ pDi , n ∼ pDj
(1)

We follow a, p, n notation for ‘anchor ’, ‘pair ’, ‘non-pair ’ respectively, which is a
conventional naming in the field. In many applications cluster information is not
accessible or number of clusters is arbitrarily large, e.g. patch matching, thus
maximum likelihood over the indicator defined in (1) is not possible. Hence,
the problem is approximately solved with pairwise loss [6] or triplet loss [15]
efficiently where only match or non-match information is used. In this paper we
focus on the triplet loss, which enforces that the distance between non-matching
samples should be at least a marginm larger than the distance between matching
pairs. The loss L is defined as,

Lm(a, p, n, fθ) = d(fθ(a), fθ(p))− d(fθ(a), fθ(n)) +m (2)

Conventionally, distance metric d is selected as the Euclidean distance to have
a Euclidean similarity space. Deep feature maps are learned back-propagating
the triplet loss through the network. The parameters are optimized with the
following optimization:

θ̂ = argmin
θ

∑

T

Lm(a, p, n, fθ) (3)
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Here T = {(a, p, n)|∀a, p ∈ Di, n ∈ Dj , j 6= i} denotes set of sampled triplets.
Triplets are usually pre-generated before training and fed through the network
as batches to stochastically solve (3), thus the local minimum is biased to the
batches at step i of epoch e as T i

e ⊂ T . Additionally based on m, training triplets
that satisfy the constraint may yield to incorrect gradient estimate and hence
increase training time and may yield bad local minimum.

2.1 Loss Function Sequence

In feature learning, margin as a hyperparameter is selected based on best con-
vention of the dataset and such convention is learned with multiple trials. We
propose to approximate margin empirically based on the trajectory of the error
during training. Let m̂ denote the true margin for a particular local minimum
θ̂. Without loss of generality let us assume L → 0 then Lm̂+ε(θ̂) > 0 ∀ε > 0. Let
Lme

be a sequence of functions that converge to the correct estimate of the loss

Lm̂(θ̂) and hence allowing us to approximately find solution during training:

lim
e→∞

Lme
(a, p, n, fθ)→ Lm̂(a, p, n, f

θ̂
) ∀a, p, n (4)

Analysis of deep learning error trajectory is difficult, hence this is not trivial
to find such sequence of margins that satisfy such convergence. Without loss
of generality, we assume loss in training is non-increasing epoch-wise Lm(θe) ≥
Lm(θe+1) where θe denotes model parameters at epoch e. One possible approach
would be starting from a margin of m0 = 0 and increasing the margin by a
constant when an error bound is reached in the training loss. Thus, we can make
the following proposition:

Proposition 1 Given a separable set, m0 = 0, and let L̄ =
∑

(a,p,n) L and ✶(.)

be indicator function; ∃ce ∈ ❘ s.t. me+1 = me + ce × ✶(L̄me
≤ ε) satisfies (4)

for an arbitrary θ with ε ≤ Lm̂(θ̂) ≈ 0.

Proof. Lm is a convex function of m for a fixed θ. Lm = 0 ∀m ∈ [0, m̂] and L is
monotonically increasing ∀m ∈ [m̂,∞], hence ∃m̂ the unique solution.

By definition for fixed m L(θe) is non increasing wrt. e and converges to a

point. Hence, if ∃ε = Lm̂(θ̂), the network converges to minimum loss and θ̂, m̂
are found in order.

We can observe that the proposition works in the case of noiseless samples.
We propose to pick an empirical ε, due to incorrect gradient estimates and the
sample observation noise. Here the selection of ε will affect the final convergence
of training as it is indirectly enforced as the minimum loss expected from the
learned feature space.

The following corollary states that instead of putting a threshold on the total
loss as a condition for increasing margin, we can consider the number of samples
with a zero loss and hence instead of a loss threshold we can put a threshold on
the size of the set of zero loss samples.
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Corollary 1 me+1 = me+ce×✶(|Ae| = 0) where Ae = {(a, p, n)|Lme
(a, p, n, θe) >

0 ∀(a, p, n) ∈ T } satisfies (4).

The corollary follows the proposition by considering the number of samples in Ae,
which contain the samples with nonzero loss in epoch e. However, due to noise
in samples, having an empty set of samples with nonzero loss is not achievable.
Considering noise and outliers in the dataset, we propose to update me with a
single scalar if the number of samples in Ae is smaller than a threshold. This
threshold can be selected based on a proportion of samples in the training set.
The details of the margin update method can be seen in Algorithm 1. At the first
line, margin m, constant margin update factor c and proportion k of samples
to be used as a threshold for number of nonzero loss samples are initialized.
Each epoch starts with an empty set Ae (Line 3). Lines 5 and 6 receive the
training batch and updates model parameters respectively. In line 7, the number
of samples with loss values close to 0 are added to the set Ae. Finally, in line 8
we test whether the number of samples in Ae is greater than a certain proportion
of total training samples. If so, the margin is updated by c.

Algorithm 1 Margin Update: training procedure given all samples T consisting
of batches T i

e for ith batch of epoch e.

1: m ∈ ❘+, c ∈ ❘+, k ∈ ◆+

2: procedure Training(e→ num-epoch)
3: Ae ← {}
4: for i→ num-batch do
5: (a, p, n)← T i

e

6: θ ← θ − γ∇θLm(a, p, n,m)
7: Ae ← Ae ∪ {(a, p, n)|Lm(a, p, n, fθ) = 0, ∀(a, p, n) ∈ T i

e }

8: if |Ae|/|T | > k then m← m+ c

9: return θ

2.2 Active Batch Sampling

Going from easy to hard during training can be satisfied feeding triplets with
smaller/larger loss value at a current epoch. For a particular dataset D with

k clusters, number of triplets is approximately
(

k
2

)

|Di|
(

|Di|
2

)

where Di is taken
as average number of samples in a cluster. Hence determining all triplets might
slow down training. Therefore, we propose a stochastic approximate of sample
selection for practical reasons. For a fixed batch size b we randomly sample 2× b
triplets from T and pick a subset of b samples of our interest. Such selection
might vary due to the interest and in order to have a curriculum with increasing
difficulty we propose two selection methods.

First few epochs of the deep learning is biased to the random initialization
of the network parameters. Therefore first few epochs form the baseline of the
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similarity range by putting samples onto space. In order to have descriptive
cluster centers, we propose to use samples that are easy to be separated and hence
we pick samples with low triplet loss. However, observe that, if we choose triplets
with close to zero loss only, we end up having incorrect gradient estimates.
Therefore before selection we limit sampled triplets to the ones without zero
loss. Let us denote such subset of triplets with T̄ i

e = {(a, p, n)|Lm(a, p, n, fθ) 6=
0, ∀(a, p, n) ∈ T i

e }, the batch for training with easy samples is formed as the
following,

T̂ i
e = arg min

T ⊂T̄ i
e

∑

(a,p,n)∈T

Lm(a, p, n, fθ) s.t. |T |= b (5)

As training moves forward it is expected that the cluster centers are well struc-
tured and hence we propose to fine tune the similarity map by using the hard
samples. Since aim in training is to fit the data, in contrast to the initial step
we do not discard the triplets with zero loss. Otherwise we will be prune to
the dataset noise and outliers. Discarding triplets with zero loss results in an
overestimated gradient and cause possible divergence in the long run, conversely
keeping samples will saturate the gradient and avoid changes in the parameter
domain. Our hard sample selection policy is as the following:

T̂ i
e = arg max

T ⊂T̄ i
e

∑

(a,p,n)∈T

Lm(a, p, n, fθ) s.t. |T |= b (6)

The details of our active sampling policy are given in Algorithm 2. Given number
of epochs f , the algorithm generate batches by easy sampling until epoch f (Line
4) and by hard sampling after epoch f (Line 5). Lines 6 and 7 receives the batch
and updates the model parameters respectively.

Algorithm 2 Active sampling: shows the steps of active sampling during batch
training given number of epochs f . The algorithm selects the batches with easy
sampling until epoch f and switches to hard sampling afterwards.

1: f ∈ ◆+

2: procedure Training(e→ num-epoch)
3: for i→ num-batch do
4: if e < f then T i

e ← (5)
5: else T i

e ← (6)

6: (a, p, n)← T i
e

7: θ ← θ − γ∇θLm(a, p, n,m)

8: return θ

In the next section we propose the implementation details of active similarity
learning and how we put loss updates and sampling together.
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Fig. 1: Network architecture used for descriptor learning. Active sampler provides
a, p, n as anchors, positives and negatives respectively for training. As denoted
with dashed lines, convolutional and fully connected layers share parameters.
During inference (after training) only one of the Siamese networks is used.

3 Implementation Details

Margin update and active sampling procedures are decoupled in training. Namely,
sampling is called at each batch state and margin update is called after each
epoch. Therefore we simply use both methods without any further adjustments.
Initial margin value is set as m = 1 for most of the experiments and c is selected
from the range [0, 1] empirically in margin update algorithm. The proportion of
samples is set as k = 0.7 which is used to decide whether to do a margin update
or not. Our batch size is b = 128, thus we performed sampling from 256 triplets.
For active sampling algorithm, we switched from easy to hard sampling after
f = 2 epochs.

In order to better evaluate the affect of the proposed active learning method,
we use the same shallow network architecture defined in [2]. The architecture
consists of Conv(7,7)-Tanh-MaxPool(2,2)-Conv(6,6)-Tanh-FullyConnected(128)
as seen in Fig.1. The system is implemented in Tensorflow. During training we
use stochastic gradient descent with momentum [12] with a fixed learning rate
of 10−4 and a momentum of 0.9.

4 Experiments

The goal of this work is to improve the performance of feature matching by
following an active learning procedure. In addition to sample selection during
batch training, we increase the difficulty of objecttive function. We carry out
two sets of experiments. First we demonstrate the use of margin update for
feature learning on MNIST dataset. Second we carry out experiments on the
image patch benchmarks of Photo Tourism dataset in order to demonstrate the
performance of our technique in local descriptor matching problem.
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N
o
u
p
d
a
te

.1
u
p
d
a
te

.5
u
p
d
a
te

Fig. 2: Descriptor learning on MNIST dataset. Initial margin is selected as .2.
Rows represent no-margin update, margin update with .1 and .5 in order. Each
column is a snapshot of test images through training in ascending order.

Feature Learning on MNIST Dataset

In order to show how active adjustment of objective affects feature learning, we
used MNIST hand written digits dataset and apply sequence of loss function idea
on training. MNIST is a good example to better observe descriptor difference,
since it has a small number of clusters (i.e. 10 clusters for 10 digits). We set initial
margin as m = 0.2 and we do not limit output of the network into an interval
(e.g. [0, 1]) in order to visualize the separation. The learned features on MNIST
dataset can be seen in Fig. 2 in various times during training. Rows represent
no-margin update, margin update with c = 0.1 and margin update with c = 0.5
respectively. Each column is a snapshot of learned features in ascending epoch
indexes. As can be seen gradual increase of margin during training increases class
separation without scattering the descriptors through space. Moreover, a more
agressive margin update step (i.e. c = 0.5) can give a larger seperation between
classes as expected.

Patch Pair Classification

We evaluate the performance of the model in local descriptor learning, where
the aim is to determine whether two provided patches are different images of
the same point in the world. Performance in patch pair similarity is convention-
ally reported using receiver operation characteristics (ROC) curve [16]. ROC
curve is formed using pairs where matches have label 1 and non matches are 0
and calculation of the curve using a scalar threshold is obvious. We report false
positive rate at .95 recall (true positive rate). Hence this measure tells us how
likely a model is to put matching pairs together and non-matching pairs apart.
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Table 1: False positive rate at .95 recall for the Photo Tourism dataset. Proposed
method is on the bottom of the table in italics. Better results are indicated with
bold-font. Models trained using one training set and tested on the test-set. If a
row has 3 numbers, that indicates model is trained using both training dataset.

Train-set Notredame Liberty Notredame Yosemite Yosemite Liberty
Test-set Yosemite Liberty Notredame

Method Dim

SIFT 128 27.29 29.84 22.53
[13] 64 15.86 19.63 18.05 21.03 13.73 14.15
[4] 29 13.55 − 16.85 18.27 11.98 −

[11] 64 10.54 11.63 12.88 14.82 7.11 7.52

[5] 128 30.22 14.26 9.64
[10] 128 16.19 8.82 4.54
[18] 256 15.89 19.91 13.24 17.25 8.38 6.01
[7] 128 12.17 14.40 9.48 15.40 8.27 5.18
[7] 256 11.00 13.58 8.84 13.08 5.67 3.87
[2] 128 7.08 7.82 7.22 9.79 3.85 3.12

active 128 6.64 5.16 6.28 4.83 4.44 3.12

In our experiments we use the UBC patches taken from Photo Tourism dataset
presented in [16]. This dataset contains three different patch sets extracted using
SIFT detector and each set includes pre-defined pairs for the dataset. We com-
pare our method with hand SIFT as a hand crafted feature baseline with other
learned descriptors [13, 4, 18]. We also compare the method with other deep
learning techniques [5],[10],[18]. Specifically; Han et al. [7] propose a network
with contrastive loss which is specifically optimized for matching. Furthermore,
Balantas et al. [2] propose anchor swapping for training a shallow descriptor
network with triplet loss. Since Balantas proposes the best performing model,
through the experiments we refer this model as ”conventional”.

In order to compare proposed method with previous work we also use the
same pre-defined pairs and generate our triplets randomly based on provided
information. We genarate 1, 28M triplets prior to the training which is a lot
smaller than the number of training samples in other methods. Even with less
number of training samples, we observed that active learned descriptors perform
better in matching. We report the results in Table 1. Compared to the other
variants with similar dimensionality (e.g we omitted 4096 dimensional represen-
tation presented in [7]) we achieve lower error rates. For implementation we set
both m = 1 and number of initialization epochs to f = 1 by default. However,
we observed that, subset Yosemite includes the most number of triplets with 0
loss with m = 1 and random initialization. In order to prevent over-fitting we
initialized training with m = 3 and used f = 2 initialization epochs. We cross
validated across different margin increments c ∈ [0, 1] and reported the best.
Empirically we observed that c = 0.5 improves performance over all scenarios.
For our comparison with performance we directly use reported values of each
proposed method. For evaluating the gradual performance increase to indicate
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FPR-T FPR-V

1 4 7 10 13 16 19
Epochs

0

10

20

30

40

50

FP
R 

[%
]

1 4 7 10 13 16 19
Epochs

10

20

30

40

50

FP
R 

[%
]

mar
smp
con
prop

Fig. 3: Training on Notredame, validating on liberty dataset. Figure divided
columns of false positive rate (FPR) for [V], [T] which denote validation and
training respectively. Compares proposed method (prop) to active sampling only
(smp), active margin only (mar) and conventional method (con) in model per-
formance.

the impact of the active learning, we use the same baseline (e.g. same training
data size, learning rate etc.) for the conventional method and proposed method.

In order to show increase in performance during training we compare pro-
posed method with its components only and conventional triplet based training.
We train the same architecture using Notredame dataset and validate on Lib-
erty dataset. We visualize our findings in Fig.3. Observe that, propose method
outperforms other approaches. Margin increases causes faster convergence in
training dataset, unfortunately causes over fitting if samples are not correctly
selected. Active sampling results a smoother training and validation error trajec-
tory compared to other methods. We conclude that by stating, proposed method
achieves better performance and hence using both margin updates and active
sample selection together is crucial.

We also compare our method’s performance to the conventional methods
for both where training set has 1.28M and 5M training samples. We visualize
our findings in Fig. 4. The impact of the proposed active learning procedure
is more clear when number of samples are smaller. False positive rates in both
training and validation for 1.28M triplet case has a marginal difference than
conventional training and hence we conclude that carefully selecting samples
increase the performance. We also note that, although loss functions for both
cases are different, the loss values during training are close to each other for 5M
triplet case and increasing margin did not increase the loss in 1.28M case. Hence,
we state that initial margin is underestimated for such scenario which is later
compensated by the proposed method. But, it is observable that as number
of samples increase, active sampling increases performance less. Therefore we
state that active sampling is useful for small training data set applications. In
Fig.4 we only demonstrate first 20 epochs of the training, at further iterations
performance margin between the conventional method and the proposed method
decreases.
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Fig. 4: Training on Liberty, validating on Notredame dataset. Figure divided
columns of false positive rate (FPR) for [V], [T] which denote validation and
training respectively. First row visualizes results for 5M pre-sampled triplets,
second row visualizes results for 1.28M pre-sampled triplets. act and con denotes
active and conventional training respectively.

5 Conclusion

We presented an active feature learning method. Our method actively increase
the difficulty of training by adjusting th emarging between matching and non-
matching pairs and picking harder samples over time during batch training. We
demonstrates the use of our algorithm on the problem of feature matching. The
experiments were carried out on Photo Tourism dataset. The presented technique
outperforms existing methods in matching performance while speeding up train-
ing time significantly. We additionally consider using statistical and/or nearest
neighborhood based outlier rejection methods during training to further increase
the performance of active sampling. Additionally, proposed margin updates can
be designed as a gradient update based on the loss function directly and hence
we also consider incorporating a generalized margin update with faster conver-
gence guarantees. Future work will focus on the use of geometric information
such as depth of the patch and camera view-point in feature learning.
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