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Abstract. Saliency detection model can substantially facilitate a wide range of 

applications. Conventional saliency detection models primarily rely on high 

level features from deep learning and hand-crafted low-level image features. 

However, they may face great challenges in nighttime scenario, due to the lack 

of well-defined feature to represent saliency information in low contrast images. 

This paper proposes a saliency detection model for nighttime scene. This model 

is capable of extracting non-local feature that is jointly learned with local 

features under a unified deep learning framework. The key idea of the proposed 

model is to hierarchically introduce non-local module with local contrast 

processing blocks, aiming to provide robust representation of saliency 

information towards low contrast images with low signal-to-noise ratio property. 

Besides, both nighttime and daytime images are utilized in training to provide 

complementary information. Extensive experiments have been conducted on 

five challenging datasets and our nighttime image dataset to evaluate the 

performance of the proposed model. 

Keywords: deep learning, non-local feature, saliency detection, low contrast 

images. 

1   Introduction 

The purpose of saliency detection is to highlight significant areas and targets in 

images. Saliency detection aims to mimic the human visual system, which can 

naturally separate predominant objects of a scene from the rest of image. As a 

computer vision preprocessing step, saliency detection has achieved great success in 

various applications, such as object retargeting [1], photo synthesis [2-3], visual 

tracking [4], image retrieval [5-6], semantic segmentation [7], and etc. 

Conventional saliency detection models primarily extract effective information 

from images based on low-level visual features [8-10]. With the development of deep 

learning in recent years, high level features extracted from deep learning have 

demonstrated superior results in saliency detection. Current deep learning based 

saliency detection models can be generally divided into three categories: 1. Global 

features extraction using convolutional neural network (CNN); 2. Multi-scale local 



features extraction; and 3. Constructing non-local neural networks to integrate global 

and local features. The first type extracts global features containing image 

objectiveness via a straight forward CNN model [11-13]. The second one extracts 

local image features incorporating multi-task processing, such as generative object 

proposals, post-processing, superpixel smoothing, superpixel segmentation [1, 14-17], 

and etc. However, either global features or local features can only reflect partial 

aspect of visual saliency and may cause certain bias. Combination of the information 

from both global and local features can be accurate and effective. Accordingly, the 

third category utilizes non-local structure to extract local and global features [18-19]. 

The non-local structure has demonstrated its effectiveness efficiency in saliency 

detection. 

However, current non-local based saliency detection models simply perform mean 

processing or short connection to different feature layers. They are mainly based on 

patch operation, and may face great challenges in nighttime scenario, due to the lack 

of well-defined feature to represent saliency information in low contrast images. In 

this paper, we propose a novel saliency detection model for nighttime scene. This 

model can extract non-local feature that is jointly learned with local features under a 

unified deep learning framework. 

The rest of the paper is organized as follows. Section 2 provides an overview of 

saliency detection models. Section 3 describes the theory and practical 

implementation of our network. Section 4 shows the performance of the proposed 

model against the state-of-the-art models. Finally, Section 5 gives the conclusions. 

 

2   Related works 

Most of current saliency detection models highlight salient object by comparing its 

difference with backgrounds, and primarily rely on low level features, including color 

[8], contrast [9], contour [10], objectness [20], focusness [21], backgroundness [22], 

uniqueness [23], and etc. These methods do not need the training process, and extract 

saliency feature at pixel level [9], region level [8] and graph [2] respectively. Recently, 

deep learning models have demonstrated their effectiveness in saliency detection, 

which can extract high level features directly from image. 

Early deep learning based saliency detection models [12-13] mainly utilize 

convolutional layer to obtain the global features in images, and use fully connected 

layers for output. However, this structure only extracts objectiveness features in 

images, and can only roughly determine the location of salient object with incomplete 

information. Aiming to address this problem, local neural networks [1] and multi-

tasking neural networks [16] are proposed recently. For example, Li et al. [1] 

proposed the multiscale deep features (MSDF) neural network, which decomposes 

input images into a set of non-overlapping blocks and then puts them into the three-

scale neural networks to learn the local features, finally outputs with a full connected 

layer. Zhao et al. [16] proposed the multi-task (MT) neural network, which uses 

convolution to extract global feeble features and combines superpixel segmentation to 

jointly guide the output of saliency maps.  



However, multiple levels of convolutional and pooling layers “blur” the object 

boundaries, and high level features from the output of the last layer are too coarse 

spatially for the saliency detection task. Accordingly, the non-local neural networks 

[18-19] are proposed to improve the performance. Luo et al. [18] proposed the non-

local deep features (NLDF) network, which uses the convolution to extract local and 

global features. Then it uses upsampling to connect each local feature. Finally, the 

local and global features are linearly fused to output the saliency map. In order to get 

the local depth feature, it subtracts the local mean from the local feature in the 

contrast layer, so that a simple processing is done on the pixel-wise. Chen et al. [19] 

proposed a deeply supervised short connections (DSSC) neural network by 

upsampling to connect low-level and high-level features shortly, so that high-level 

features can share the information from the low-level features. Both of these methods 

increase the receptive fields of convolution, and greatly improve their effectiveness to 

avoid blurring object boundaries. 

However, current non-local based saliency detection models simply perform mean 

processing or short connection to different feature layers [24]. They are mainly based 

on patch operation, and may face great challenges in nighttime scenario, due to the 

lack of well-defined feature to represent saliency information in low contrast images. 

In this paper, we propose a novel saliency detection model for nighttime scene. As 

illustrated in Fig. 1, our model differs from current models as it extracts non-local 

feature which is jointly learned with local features under a unified deep learning 

framework. 

 

 

Fig. 1. Architecture of our 4 × 5 grid-CNN network for salient object detection. 

The main attributions of the proposed model are in three folds:  

1. The model employs non-local blocks with local contrast processing units to 

learn saliency information from low contrast images; 

2. The model introduces an IoU boundary loss to the loss function to make the 

boundary robust in training process; 



3. Both nighttime and daytime images are used in training. Although the proposed 

model still falls behind the existing deep saliency models on daytime images, it 

receives the highest performance on nighttime images. Thus, the experimental results 

show that the non-local block layers efficiently extract local details on low contrast 

images. 

3   Proposed Model 

3.1 Network Architecture 

As illustrated in Fig. 1, this paper provides a deep convolutional network architecture 

to learn discriminant saliency features from nighttime scene. Both local and global 

features are incorporated for salient object detection. In additions, pixel-wise 

calculating can provide sufficient information from low contrast images. Specifically, 

we have implemented a novel grid-like CNN network containing 5 columns and 4 

rows. Each column extracts features at a given input scale. As illustrated in Fig. 2, the 

input image (on the left) is a 352 352×  image and the output (on the right) is a 

176 176×  saliency map which was resized to 352 352×  via bilinear interpolation. 

 

 



Fig. 2. Network: As an input, we have RGB channels image. A1-A5 feature maps are obtained 

by the first layer with five convolutional blocks. The global (G) feature map is acquired after 

A5. B1-B5 are computed by the second layer with five convolutional blocks that change the 

channels to 128. C1-C5 are calculated by the third layer with five non-local blocks that obtain 

more useful features from low contrast images .we perform upsampling on last layer which 

generated U2-U5, followed by the series of the deconvolution layers. A 1x1 convolution is 

added after C1 to sum the number of channels to 640, and then local feature map L is gained. 

Finally, G and L are liner-fused by a 1x1 convolution to generate the saliency map. 

 

The first row of our model contains five convolutional blocks derived from VGG-

16 [1] (CONV-1 to CONV-5), as shown in Fig. 1. These convolution blocks contain a 

max pooling operation of stride 2 which downsamples their feature maps{ 1, , 5}A AK , 

as shown in Fig. 2. The last and rightmost convolution block of the first row computes 

features G  that are specific to the global context of the image. 

The second and third row is a set of ten convolutional blocks, CONV-6 to CONV-

10 for row 2 and non-local layer for row 3(see in Fig. 1). The aim of these blocks is to 

compute the similarity of any two pixels by self-attention to each resolution. The non-

local layer capture the difference of each feature against its local neighborhood 

favoring regions that are either brighter or darker than their neighbors 

The last row is a set of deconvolution layers used to upscale the features maps from 

11 11×  (bottom right) all the way to 176 176×  (bottom left). These UNPOOL layers 

are a means of combining the feature maps ( Ci ,Ui ) computed at each scale. The 

lower left block constructs the final local feature map L . The SCORE block has 2 

convolution layers and a softmax to compute the saliency probability by fusing the 

local ( L ) and global ( G ) features. Further details of our model are given in Fig. 2. 

 

3.2 Non-Local Feature Extraction  

First, the size of input images is resized to 352×352, and then the feature maps of the 

first layer in the network are extracted by VGG-16 (Conv-1 to Conv-5), denoted as 

Ai , 1, ,5i = L . Finally, the feature maps outputted by VGG-16 are connected by the 

convolutional blocks CONV-6 to CONV-10 each of which has a kernel with size 

3×3 and 128 channels. The feature maps after the convolution are denoted as Bi , 

1, ,5i = L . 

In the architecture of NLDF, the contrast features layer adopts a simple mean layer, 

which cannot obtain a larger receptive field in local features. Differently, in this layer, 

we use the architecture of non-local block to generate three feature maps by 1 1×  

convolution of the input value Bi . Next, the similarity of any two pixels in the feature 

map is determined by Gaussian filter, which makes up for the lack of local computing 

information of a single mean layer. At last, the weight of each pixel in the feature map 

is updated by residual network, so that the salient object in the feature map is more 

prominent to achieve the purpose of noise reduction, and acquire more useful features 

from low contrast images, and make the edge of the salient object clearer. 

In order to learn more useful information from low contrast images, we are 

motivated by non-local mean [25] and bilateral filters [26], and then take advantage of 



the matrix multiplication to calculate the similarity of any two pixels and make the 

feature map embedded into Gaussian after 1 1×  convolution, which is defined as:  

( )
( , ) ,

T
i jW x W x

i j
f x x e θ φ=  

(1) 

where ix ,
jx represent any two pixels of Bi . Wθ  and Wφ  represent the weight of 

convolution. After the convolution, the number of channels becomes half as many as 

it was before. 

The similarity calculated above is stored in feature maps by means of self-attention, 

which is defined by max( ) ( )T T

i
y soft Bi W W Bi g Biθ φ= . After that, the feature map Ci , 

1, ,5i = L  is obtained through a process of residual operation by iy  and Bi  via: 

B iCi W y Bi= + , (2) 

where 
B

W  is a weighting parameter to restore the same number of channels 
i

y  

same as Bi . Therefore, the size of the Ci  feature map is the same as before after 

the process of the non-local network layer Bi .  

The last layer is the deconvolution layer, which is designed to connect the 

precomputed local features of the five branches of network inversely one by one. At 

the same time, each size of the feature map is increased by a ratio of {2, 4, 8, 16}. By 

doing so, the information expressed by the feature map becomes richer. Different 

from the NLDF [18], we replaced the mean layer with a non-local module layer, the 

output of which is connected by upsampling. The feature map deconvolved is defined 

as ( , ( 1))Ui UNPOOL Ci U i= + , where theUi , 2, ,5i = K
 
is the resulting unpooled 

feature map. After that, the local feature map (denoted as L ) is acquired by. 

( 1, 2)L CONV C U=  (3) 

 

3.3 Cross Entropy Loss 

We adopt the method of linear combination to combine the local features L  and 

global features G . 
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The formula uses two linear operators ( L
W , L

b ) and ( G
W , G

b ). The ( )y v  

represents ground truth. The final saliency map is predicted as ˆ( )iy v . 

The cross-entropy loss function is defined as:  

1 {0,1}

1
ˆ ˆ( ( ), ( )) ( ( ) )(log( ( ) ))

N

j i i

i c

H y v y v y v c y v c
N = ∈

= − = =∑ ∑ . 

 

(5) 

What's more, we make great use of the IoU boundary loss of NLDF [18] to make 

the boundary robust. 
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Finally, the final loss function is obtained by a combination of the cross-entropy 

loss function and the IoU boundary loss, 

ˆˆ( ( ), ( )) (1 ( , ))i j j j j

j j

Total Los H y v y v IoU C Cs λ γ≈ + −∑ ∑∫ . 
 

(7) 

 Our whole loss computation procedure is end-to-end train, and an example is shown 

in Fig. 3.  

Fig. 3. A single input image. (a) together with its ground truth saliency; (b) the estimated 

boundary; (c) after training for 17 epochs is in good agreement with the true bound. 

4   Experiments   

4.1 Datasets 

In order to evaluate the performance of the proposed approach, we conduct a set of 

qualitative and quantitative experiments on six benchmark datasets annotated with 

pixelwise ground-truth labeling, including MSRA-B [27], HKU-IS [1], DUT-

OMRON [28], PASCAL-S [29], and ECSSD [30]. Besides, we built a nighttime 

images (NTI) dataset with 478 nighttime natural scene images to facilitate this study. 

MSRA-B: contains 5000 images, most of which have one salient object and 

corresponding pixel ground truth [31]. 

HKU-IS: contains 4447 images, most of which are used for multiple salient objects. 

DUT-OMRON: contains 5168 images, each of which contains one or more new 

salient objects with a complex background. 

PASCAL-S: contains 850 images. This dataset contains both pixel-wise saliency 

ground truth and eye fixation ground truth labeled by 12 subjects. 

ECSSD: contains 1000 images with complicated architecture all of which are 

collected from the Internet. The ground truth masks were labeled by 5 subjects. 

NTI: contains 478 nighttime natural scene images, This dataset contains two 

degree low contrast images, which consists of 3 subjects, the one about Only a person, 

the another with many people , others included human and object(such as bicycle, 

car ,and house and etc.). So the model with low contrast features can be learned via 

the dataset. 
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Fig. 4. Saliency maps produced by the GBMR[32], MT [16], DSSC[19], NLDF[18] methods 

compared to our method on six datasets. The Our maps provides clear salient regions and 

exhibit good uniformity as compared to the saliency maps from the other deep learning 

methods (MT, NLDF, DSSC) on NTI dataset. Our method is also more robust to background 

clutter than the non-deep-learning method (GBMR). 

 

4.2 Implementation and Experimental Setup 

Our method is accomplished by TensorFlow [1]. The weights of CONV-1 to CONV-5 

are initialized with network of VGG-16 [13]. All of the weights added in the network 

were initialized randomly by a truncated normal ( 0.01σ = ). Besides, the biases were 

initialized to zero. There is an adam optimizer [33] used to train our model with a 

learning rate of
610−
,

1
0.9β = , and 

2
0.999β = . 



In our experiment, the datasets of MSRA-B and NTI were divided into three parts: 

the 1000 images in MSRA-B and 220 images in NTI were used to train, and the 

validation set included 500 images in MSRA-B and 100 images in NTI, the rest of 

which were added to the test set. Our models were trained by the combination of 

training set and validation set. What's more, the method of horizontal flipping is 

adopted to achieve the purpose of data augmentation. The inputs were resized 

to 352 352×  for the training of network. It takes about seven hours for 17 epochs in 

the configuration of NVIDIA 1070. 

 

4.3 Evaluation Criteria 

In this paper, we make use of precision-recall (PR) curves, Fβ  and mean absolute 

error (MAE) to evaluate the performance of saliency detection. By binarizing the 

saliency maps with different thresholds which range from 0 to 1 and comparing 

against the ground truth, the PR curve is obtained. The Fβ  is defined as, 

2

2

(1 )
,

Precision Recall
F

Precision Recall
β

β

β

+ ⋅ ⋅
=

⋅ +
 

 

(8) 

where 2β  is valued by 0.3 as usual so that the precision over recall can be 

emphasized just like [34]. The maximum F-Measure is computed from the PR curve. 

The MAE [35] is defined as  

1 1

1
| ( , ) ( , ) |,

W H

x y

MAE S x y L x y
W H = =

= −
×
∑∑  

 

(9) 

where the function of ( , )S x y  is a predicted salient map and ( , )L x y  is the ground 

truth. The parameters of W and H represent the width and height, respectively. 

 

4.4 Data fusion 

There are three models obtained by the progress of training. We call the model trained 

with only the night images NT-model and the model trained with high contrast images 

is called the DT-model, Furthermore, the NDT-model was defined by a model trained 

by combining night images with high contrast images. The performance of the models 

is shown in Fig. 5. MAE and Max Fβ  are illustrated in Table. 1. 
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Fig. 5. Daytime datasets to get the model DT and the model NT obtained by the night datasets. 

Naturally we acquired the model of DT&NT with a fusion of them. It turned out that the DT 

detected no objects and NT measured objects with relatively blurry edges. After a fusion of 

them, the performance of the model is greatly improved.  

Through the test, we can see from the evaluation indicators that the NDT-model is 

13.1% lower than the DT-model in MAE, and a 46.5% increase of Max Fβ . In 

addition, the NDT-model is 11% higher than the NT-model, and the MAE is 1% 

lower (see Table. 1). The model after a data fusion becomes more robust than before 

(see Fig. 5).  

Table 1.  MAE and Max Fβ  performance of NT-model, DT-model, NDT-model. 

Dataset Metric Daytime (DT) Nighttime (NT) DT&NT(ND

T) 

 

NTI 
Max Fβ  0.316 0.631 0.741 

MAE 0.171 0.050 0.040 

 

4.5 Comparison with the State-of-the-Art 

Visual comparison of the saliency maps is provided in Fig. 4. All saliency maps of 

other methods were either provided by the authors or computed using the authors' 

released code. PR curves are shown in Fig. 6, and the Max Fβ  and MAE scores are in 

Table 2. 

Table 2.  Quantitative performance of our model on six benchmark datasets compared with the 

GBMR [32], MT [16], DSSC [19], and NLDF [18] models. The latter three are deep learning 

methods and the former is not. The Max Fβ  and MAE metrics are defined in the text. 

Dataset Metric GBMR MT NLDF SC ours 

DUT- Max Fβ  0.474 0.774 0.753 0.726 0.747 



OMRON MAE 0.247 0.084 0.080 0.113 0.088 

 

ECSSD 
Max Fβ  0.549 0.900 0.905 0.914 0.896 

MAE 0.297 0.079 0.063 0.069 0.066 

 

HKU-IS 
Max Fβ  0.525 0.871 0.915 0.928 0.907 

MAE 0.267 0.084 0.049 0.069 0.052 

 

MSRA-B 

 

Max Fβ  0.592 0.893 0.941 0.884 0.903 

MAE 0.245 0.069 0.030 0.075 0.049 

 

PASCAL-S 
Max Fβ  0.587 0.856 0.849 0.851 0.835 

MAE 0.320 0.140 0.146 0.148 0.149 

 

NTI 
Max Fβ  0.271 0.667 0.668 0.423 0.741 

MAE 0.080 0.048 0.042 0.135 0.040 

 

Our network structure is similar to NLDF. Differently, a non-local block is added 

into the local module to calculate any two pixels similarity of the feature maps by 

self-attention. In result, the MAE decreased by 0.2%, Max Fβ  increased by 7.3% 

compared with NLDF in NTI dataset.  

Although low-level and high-level features are combined by short connections to 

make the feature map more informative in DSSC, it is difficult to learn some useful 

features for the night scene. Thus, more useful features are obtained via non-local 

block for low contrast images in our method.  

Moreover, the MT adopted superpixel segmentation to enhance the correlation 

between pixels in the environment of low SNR, but the convolution model is too 

simple to learn serviceable features. We took great advantage of the non-local 

network to compute the similarity of any two pixels for a better effect in NTI dataset.  

As for the traditional method GBMR, it is difficult to find an effective feature 

applying to nighttime scenes. Differently, the proposed model adopted a data-driven 

approach to gain more effective features to make our method more robust. 

Fig. 6. PR curves for our model compared to GBMR [32], MT [16], DCSS [19], and NLDF 

[18]. Our model can deliver state-of-the-art performance on NTI datasets. 

  
DUT-OMRON ECSSD HUK-IS 

   

MSRA-B PASCAL-S NTI 



Since our method is designed for nighttime scenes, the daytime images can be 

optionally used for data fusion to improve the performance at nighttime. As illustrated 

in Fig. 6, the proposed model can achieve the best performance compared to NLDF, 

MT, DSSC and GBMR. 

5   Conclusion 

In this paper, we utilized a unified deep learning framework to integrate local and 

global features, and introduce non-local module with local contrast processing blocks. 

This method can provide robust representation of saliency information towards low 

contrast images with low signal-to-noise ratio property. Moreover, we utilize both 

nighttime and daytime images in training, which can provide complementary 

information to enhance performance of saliency detection. Our method has achieved 

the best performance compared to the state-of the-art methods. 
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