
Multi-style Generative Network for Real-time Transfer

Hang Zhang1,2 Kristin Dana2

1Amazon AI 2Rutgers University

hzaws@amazon.com, kdana@ece.rutgers.edu

Abstract. Despite the rapid progress in style transfer, existing approaches us-

ing feed-forward generative network for multi-style or arbitrary-style transfer are

usually compromised of image quality and model flexibility. We find it is funda-

mentally difficult to achieve comprehensive style modeling using 1-dimensional

style embedding. Motivated by this, we introduce CoMatch Layer that learns to

match the second order feature statistics with the target styles. With the CoMatch

Layer, we build a Multi-style Generative Network (MSG-Net), which achieves

real-time performance. In addition, we employ an specific strategy of upsampled

convolution which avoids checkerboard artifacts caused by fractionally-strided

convolution. Our method has achieved superior image quality comparing to state-

of-the-art approaches. The proposed MSG-Net as a general approach for real-

time style transfer is compatible with most existing techniques including content-

style interpolation, color-preserving, spatial control and brush stroke size control.

MSG-Net is the first to achieve real-time brush-size control in a purely feed-

forward manner for style transfer. Our implementations and pre-trained models

for Torch, PyTorch and MXNet frameworks will be publicly available1.

1 Introduction

Style transfer can be approached as reconstructing or synthesizing texture based on

the target image semantic content [1]. Many pioneering works have achieved success

in classic texture synthesis starting with methods that resample pixels [2–5] or match

multi-scale feature statistics [6–8]. These methods employ traditional image pyramids

obtained by handcrafted multi-scale linear filter banks [9, 10] and perform texture syn-

thesis by matching the feature statistics to the target style. In recent years, the con-

cepts of texture synthesis and style transfer have been revisited within the context of

deep learning. Gatys et al. [11] shows that using feature correlations (i.e. Gram Ma-

trix) of convolutional neural nets (CNN) successfully captures the image styles. This

framework has brought a surge of interest in texture synthesis and style transfer using

iterative optimization [1, 11, 12] or training feed-forward networks [13–16]. Recent

work extends style flexibility using feed-forward networks and achieves multistyle or

arbitrary style transfer [17–20]. These approaches typically encode image styles into

1-dimensional space, i.e. tuning the featuremap mean and variance (bias and scale) for

different styles. However, the comprehensive appearance of image style is fundamen-

tally difficult to represent in 1D embedding space. Figure 3 shows style transfer results

1 links can be found at http://hangzhang.org/



2 Hang Zhang1,2 Kristin Dana2

Fig. 1: Examples of transferred images and the corresponding styles using the proposed

MSG-Net.

using the optimization-based approach [12] and we can see Gram matrix representa-

tion produces more appealing image quality comparing to mean and variance of CNN

featuremap.

In addition to the image quality, concerns about the flexibility of current feed-

forward generative models have been raised in Jing et al. [21], and they point out that

no generative methods can adjust the brush stroke size in real-time. Feeding the gener-

ative network with high-resolution content image usually results in unsatisfying images

as shown in Figure 6. The generative network as a fully convolutional network (FCN)

can accept arbitrary input image sizes. Resizing the style image changes the relative

brush size and the multistyle generative network matching the image style at run-time

should naturally enable brush-size control by changing the input style image size. What

limits the current generative model from being aware of the brush size? The 1D style

embedding (featuremap mean and variance) fundamentally limits the potential of ex-

ploring finer behavior for style representations. Therefore, a 2D method is desired for

finer representation of image styles.

As the first contribution of the paper, we introduce an CoMatch Layer which em-

beds style with a 2D representation and learns to match the second-order feature statis-

tics (Gram Matrix) of the style targets inherently during the training. The CoMatch

Layer is differentiable and end-to-end learnable with existing generative network archi-

tectures without additional supervision. The proposed CoMatch Layer enables multi-

style generation from a single feed-forward network.

The second contribution of this paper is building Multi-style Generative Network

(MSG-Net) with the proposed CoMatch Layer and a novel Upsample Convolution. The

MSG-Net as a feed-forward network runs in real-time after training. Generative net-

works typically have a decoder part recovering the image details from downsampled

representations. Learning fractionally-strided convolution [22] typically brings checker-

board artifacts. For improving the image quality, we employ a strategy we call upsam-

pled convolution, which successfully avoids the checkerboard artifacts by applying an



Multi-style Generative Network for Real-time Transfer 3

Fig. 2: An overview of MSG-Net, Multi-style Generative Network. The transforma-

tion network explicitly matches the features statistics of the style targets captured by a

Siamese network using the proposed CoMatch Layer (introduced in Section 3). A pre-

trained loss network provides the supervision of MSG-Net learning by minimizing the

content and style differences with the targets as discussed in Section 4.2.

(a) Input (b) Mean & Var (c) Gram Matrix

Fig. 3: Comparing 1D and 2D style representation using an optimization-based ap-

proach [12]. (a) Input image and style. (b) Style transfer result minimizing difference of

CNN featuremap mean and variance. (c) Style transfer result minimizing the difference

in Gram matrix representation.

integer stride convolution and outputs an upsampled featuremap (details in Section 4.1).

In addition, we extend the Bottleneck architecture [23] to an Upsampling Residual

Block, which reduces computational complexity without losing style versatility by pre-

serving larger number of channels. Passing identity all the way through the generative

network enables the network to extend deeper and converge faster. The experimental re-

sults show that MSG-Net has achieved superior image fidelity and test speed compared

to previous work. We also study the scalability of the model by extending 100-style

MSG-Net to 1K styles using a larger model size and longer training time, and we ob-

serve no obvious quality differences. In addition, MSG-Net as a general multi-style

strategy is compatible to most existing techniques and progress in style transfer, such

as content style trade-off and interpolation [17], spatial control, color preserving and

brush-size control [24, 25].

To our knowledge, MSG-Net is the first to achieve real-time brush-size control in a

purely feed-forward manner for multistyle transfer.



4 Hang Zhang1,2 Kristin Dana2

1.1 Related Work

Relation to Pyramid Matching. Early methods for texture synthesis were developed

using multi-scale image pyramids [4, 6–8]. The discovery in these earlier methods was

that realistic texture images could be synthesized from manipulating a white noise im-

age so that its feature statistics were matched with the target at each pyramid level. Our

approach is inspired by classic methods, which match feature statistics within the feed-

forward network, but it leverages the advantages of deep learning networks while plac-

ing the computational costs into the training process (feed-forward vs. optimization-

based).

Relation to Fusion Layers. Our proposed CoMatch Layer is a kind of fusion layer that

takes two inputs (content and style representations). Current work in fusion layers with

CNNs include feature map concatenation and element-wise sum [26–28]. However,

these approaches are not directly applicable, since there is no separation of style from

content. For style transfer, the generated images should not carry semantic information

of the style target nor styles of the content image.

Relation to Generative Adversarial Training. The Generative Adversarial Network

(GAN) [29], which jointly trains an adversarial generator and discriminator simultane-

ously, has catalyzed a surge of interest in the study of image generation [26,27,30–39].

Recent work on image-to-image GAN [26] adopts a conditional GAN to provide a gen-

eral solution for some image-to-image generation problems. For those problems, it was

previously hard to define a loss function. However, the style transfer problem cannot

be tackled using the conditional GAN framework, due to missing ground-truth image

pairs. Instead, we follow the work [13, 14] to adopt a discriminator/loss network that

minimizes the perceptual difference of synthesized images with content and style tar-

gets and provides the supervision of the generative network learning. The initial idea of

employing Gram Matrix to trigger style synthesis is inspired by a recent work [30] that

suggests using an encoder instead of random vector in GAN framework.

Recent Work in Multiple or Arbitrary Style Transfer. Recent/concurrent work explores

multiple or arbitrary style transfer [17, 17, 18, 20]. A style swap layer is proposed

in [20], but gets lower quality and slower speed (compared to existing feed-forward ap-

proaches). An adaptive instance normalization is introduced in [18] to match the mean

and variance of the feature maps with the style target. Instead, our CoMatch Layer

matches the second order statistics of Gram Matrices for the feature maps. We also

explore the scalability of our approach in the Experiment Section 5.

2 Content and Style Representation

CNNs pre-trained on a very large dataset such as ImageNet can be regarded as descrip-

tive representations of image statistics containing both semantic content and style in-

formation. Gatys et al. [12] provides explicit representations that independently model

the image content and style from CNNs, which we briefly describe in this section for

completeness.



Multi-style Generative Network for Real-time Transfer 5

Fig. 4: Left: fractionally-strided convolution. Right: Upsampled convolution, which re-

duces the checkerboard artifacts by applying an integer stride convolution and out-

putting an upsampled featuremaps.

The semantic content of the image can be represented as the activations of the de-

scriptive network at i-th scale F i(x) ∈ R
Ci×Hi×Wi with a given the input image x,

where the Ci, Hi and Wi are the number of feature map channels, feature map height

and width. The texture or style of the image can be represented as the distribution of the

features using Gram Matrix G(F i(x)) ∈ R
Ci×Ci given by

G
(

F i(x)
)

=

Hi
∑

h=1

Wi
∑

w=1

F i
h,w(x)F

i
h,w(x)

T
. (1)

The Gram Matrix is orderless and describes the feature distributions. For zero-centered

data, the Gram Matrix is the same as the covariance matrix scaled by the number of

elements Ci × Hi × Wi. It can be calculated efficiently by first reshaping the feature

map Φ
(

F i(x)
)

∈ R
Ci×(HiWi), where Φ() is a reshaping operation. Then the Gram

Matrix can be written as G
(

F i(x)
)

= Φ
(

F i(x)
)

Φ
(

F i(x)
)T

.

3 CoMatch Layer

In this section, we introduce CoMatch Layer, which explicitly matches second order

feature statistics based on the given styles. For a given content target xc and a style

target xs, the content and style representations at the i-th scale using the descriptive

network can be written as F i(xc) and G(F i(xs)), respectively. A direct solution Ŷi is

desirable which preserves the semantic content of input image and matches the target

style feature statistics:

Ŷi =argmin
Yi

{‖Yi −F i(xc)‖
2
F

+α‖G(Yi)− G
(

F i(xs)
)

‖2F }.
(2)

where α is a trade-off parameter that balancing the contribution of the content and style

targets.

The minimization of the above problem is solvable by using an iterative approach,

but it is infeasible to achieve it in real-time or make the model differentiable. However,

we can still approximate the solution and put the computational burden to the training



6 Hang Zhang1,2 Kristin Dana2

Fig. 5: We extend the original down-sampling residual architecture (left) to an up-

sampling version (right). We use a 1×1 fractionally-strided convolution as a shortcut

and adopt reflectance padding.

(a) input (b) MSG-Net (ours) (c) baseline

Fig. 6: Comparing Brush-size control. a) High-resolution input image and dense styles.

b) Style transfer results using MSG-Net with brush-size control. c) Standard generative

network [14] without brush-size control. See also Figure 8

stage. We introduce an approximation which tunes the feature map based on the target

style:

Ŷi = Φ−1
[

Φ
(

F i(xc)
)T

WG
(

F i(xs)
)

]T

, (3)

where W ∈ R
Ci×Ci is a learnable weight matrix and Φ() is a reshaping operation to

match the dimension, so that Φ
(

F i(xc)
)

∈ R
Ci×(HiWi). For intuition on the function-

ality of W , suppose W = G
(

F i(xs)
)−1

, then the first term in Equation 2 (content

term) is minimized. Now let W = Φ
(

F i(xc)
)−T

L(F i(xs))
−1

, where L
(

F i(xs)
)

is

obtained by the Cholesky Decomposition of G
(

F i(xs)
)

= L
(

F i(xs)
)

L
(

F i(xs)
)T

,

then the second term of Equation 2 (style term) is minimized. We let W be learned di-

rectly from the loss function to dynamically balance the trade-off. The CoMatch Layer



Multi-style Generative Network for Real-time Transfer 7

is differentiable and can be inserted in the existing generative network and directly

learned from the loss function without any additional supervision.

4 Multi-style Generative Network

4.1 Network Architecture

Prior feed-forward based single-style transfer work learns a generator network that takes

only the content image as the input and outputs the transferred image, i.e. the genera-

tor network can be expressed as G(xc), which implicitly learns the feature statistics

of the style image from the loss function. We introduce a Multi-style Generative Net-

work which takes both content and style target as inputs. i.e. G(xc, xs). The proposed

network explicitly matches the feature statistics of the style targets at runtime.

As part of the Generator Network, we adopt a Siamese network sharing weights

with the encoder part of transformation network, which captures the feature statistics of

the style image xs at different scales, and outputs the Gram Matrices {G(F i(xs))}(i =
1, ...K) where K is the total number of scales. Then a transformation network takes the

content image xc and matches the feature statistics of the style image at multiple scales

with CoMatch Layers.

Upsampled Convolution. Standard CNN for image-to-image tasks typically adopts

an encoder-decoder framework, because it is efficient to put heavy operations (style

switching) in smaller featuremaps and also important to keep a larger receptive field for

preserving semantic coherence. The decoder part learns a fractionally-strided convo-

lution to recover the detail information from downsampled featuremaps. However, the

fractionally strided convolution [22] typically introduces checkerboard artifacts [40].

Prior work suggests using upsampling followed by convolution to replace the standard

fractionally-strided convolution [40]. However, this strategy will decrease the recep-

tive field and it is inefficient to apply convolution on an upsampled area. For this, we

use upsampled convolution, which has an integer stride, and outputs upsampled fea-

turemaps. For an upsampling factor of 2, the upsampled convolution will produce a

2×2 outputs for each convolutional window as visualized in Figure 4. Comparing to

fractionally-strided convolution, this method has the same computation complexity and

4 times parameters. This strategy successfully avoid upsampling artifacts in the network

decoder.

Upsample Residual Block. Deep residual learning has achieved great success in visual

recognition [23,41]. Residual block architecture plays an important role by reducing the

computational complexity without losing diversity by preserving the large number of

feature map channels. We extend the original architecture with an upsampling version

as shown in Figure 5 (right), which has a fractionally-strided convolution [22] as the

shortcut and adopts reflectance padding to avoid artifacts of the generative process.

This upsampling residual architecture allows us to pass identity all the way through the

network, so that the network converges faster and extends deeper.



8 Hang Zhang1,2 Kristin Dana2

Fig. 7: Content and style trade-off and interpolation.

Brush Stroke Size Control. Feeding the generative model with high-resolution image

usually results in unsatisfying style transfer outputs, as shown in Figure 6 (c). Control-

ling brush stroke size can be achieved using optimization-based approach [25]. Resizing

the style image changes the brush-size, and feed-forward generative model matches the

feature statistics at runtime should naturally achieve brush stoke size control. However,

prior work is mainly limited by the 1D style embedding, because this finer style behav-

ior cannot be captured using merely featuremap mean and variance. With MSG-Net,

the CoMatch Layer matching the second order statistics elegantly solves the brush-size

control. During training, we train the network with different style image sizes to learn

from different brush stroke sizes. After training, the brush stroke size can be an option to

the user by changing style input image size. Note that the MSG-Net can accept different

input sizes for style and content images. Example results are shown in Figure 8.



Multi-style Generative Network for Real-time Transfer 9

Fig. 8: Brush-size control using MSG-Net. Top left: High-resolution input image and

dense style. Others: Style transfer results using MSG-Net with brush-size control.

Other Details. We only use in-network down-sample (convolutional) and up-sample

(upsampled convolution) in the transformation network. We use reflectance padding to

avoid artifacts at the border. Instance normalization [16] and ReLU are used after weight

layers (convolution, fractionally-strided convolution and the CoMatch Layer), which

improves the generated image quality and is robust to the image contrast changes.

4.2 Network Learning

Style transfer is an open problem, since there is no gold-standard ground-truth to follow.

We follow previous work to minimize a weighted combination of the style and content

differences of the generator network outputs and the targets for a given pre-trained loss

network F [13, 14]. Let the generator network be denoted by G(xc, xs) parameterized

by weights WG. Learning proceeds by sampling content images xc ∼ Xc and style

images xs ∼ Xs and then adjusting the parameters WG of the generator G(xc, xs) in

order to minimize the loss:

ŴG = argmin
WG

Exc,xs
{

λc‖F
c (G(xc, xs))−Fc(xc)‖

2
F

+ λs

K
∑

i=1

‖G
(

F i(G(xc, xs))
)

− G(F i(xs))‖
2
F

+ λTV ℓTV (G(xc, xs))},

(4)

where λc and λs are the balancing weights for content and style losses. We consider

image content at scale c and image style at scales i ∈ {1, ..K}. ℓTV () is the total varia-

tion regularization as used prior work for encouraging the smoothness of the generated

images [14, 42, 43].



10 Hang Zhang1,2 Kristin Dana2

input Dumoulin

et al. [17]

MSG-Net

(ours)

Gatys

et al. [12]

Huang

et al. [18]

Chen

& Schmidt [20]

Fig. 9: The tradeoff between style-flexibility and output-image quality is challenging

for generative models. Our approach enables multi-style transfer and has minimal dif-

ference in quality compared to the optimization-based Gatys approach [12].

5 Experimental Results

5.1 Style Transfer

Baselines. We use the implementation of the work of Gatys et al. [12] as a gold stan-

dard baseline for style transfer approach (technical details will be included in the sup-

plementary material). We also compare our approach with state-of-the-art multistyle

or arbitrary style transfer methods, including patch-based approach [20] and 1D style

embedding [17,18]. The implementations from original authors are used in this experi-

ments.

Method Details. We adapt 16-layer VGG network [44] pre-trained on ImageNet as the

loss network in Equation 4, because the network features learned from a diverse set of

images are likely to be generic and informative. We consider the style representation at

4 different scales using the layers ReLU1 2, ReLU2 2, ReLU3 3 and ReLU4 3, and use

the content representation at the layer ReLU2 2. The Microsoft COCO dataset [45] is

used as the content image image set Xc, which has around 80,000 natural images. We

collect 100 style images, choosing from previous work in style transfer. Additionally

900 real paintings are selected from the open-source artistic dataset wikiart.org [46]



Multi-style Generative Network for Real-time Transfer 11

Model-size Speed (256) Speed (512)

Gatys et al. [12] N/A 0.07 0.02

Johnson et al. [14] 6.7MB 91.7 26.3

Dumoulin et al. [17] 6.8MB 88.3 24.7

Chen et al. [20] 574MB 5.84 0.31

Huang et al. [18] 28.1MB 37.0 10.2

MSG-Net-100 (ours) 9.6MB 92.7 29.2

MSG-Net-1K (ours) 40.3MB 47.2 14.3

Table 1: Comparing model size on disk and inference/test speed fps (frames/sec) of

images with the size of 256×256 and 512×512 on a NVIDIA Titan Xp GPU average

over 50 samples. MSG-Net-100 and MSG-Net-1K have 2.3M and 8.9M parameters

respectively.

as additional style images for training MSG-Net-1K. We follow the work [13, 14] and

adopt Adam [47] to train the network with a learning rate of 1× 10−3. We use the loss

function as described in Equation 4 with the balancing weights λc = 1, λs = 5, λTV =
1× 10−6 for content, style and total regularization. We resize the content images xc ∼
Xc to 256 × 256 and learn the network with a batch size of 4 for 80,000 iterations.

We iteratively update the style image xs every iteration with size from {256, 512, 768}
for runtime brush-size control. After training, the MSG-Net as a fully convolutional

network [22] can accept arbitrary input image size. For comparing the style transfer

approaches, we use the same content image size, by resizing the image to 512 along the

long side. Our implementations are based on Torch [48], PyTorch [49] and MXNet [50].

It takes roughly 8 hours for training MSG-Net-100 model on a Titan Xp GPU.

Model Size and Speed Analysis For mobile applications or cloud services, the model

size and test speed are crucial. We compare the model size and inference/test speed

of style transfer approaches in Table 1. Our proposed MSG-Net-100 has a comparable

model size and speed with single style network [13, 14]. The MSG-Net is faster than

Arbitrary Style Transfer work [18], because of using a learned compact encoder instead

of pre-trained VGG network.

Qualitative Comparison Our proposed MSG-Net achieves superior performance com-

paring to state-of-the-art generative network approaches as shown in Figure 9. One

may argue that the arbitrary style work has better scalability/capacity [18,20]. The style

flexibility and image quality are always hard trade-off for generative model, and we

particularly focus on the image quality in this work. More examples of the transfered

images using MSG-Net are shown in Figure 12.

Model Scalability. Prior work using 1D style embedding has achieved success in the

scalability of style transfer towards the goal of arbitrary style transfer [18]. To test the

scalability of MSG-Net, we augment the style set to 1K images, by adding 900 extra

images from the wikiart.org [46]. We also build a larger model MSG-Net-1K with larger

model capacity by increasing the width/channels of the model at mid stage (64×64) by

a factor of 2, resulting in 8.9M parameters. We also increase the training iterations by



12 Hang Zhang1,2 Kristin Dana2

Fig. 10: Color control using MSG-Net, (left) content and style images, (right) color-

preserved transfer result.

Fig. 11: Spatial control using MSG-Net. Left: input image, middle: foreground and

background styles, right: style transfer result. (Input image and segmentation mask from

Shen et al. [51, 52].)

4 times (320K) and follow the same training procedure as MSG-Net-100. We observe

no quality degradation when increasing the number of styles (examples shown in the

supplementary material).

5.2 Runtime Manipulation

MSG-Net as a general approach for real-time style transfer is compatible with exist-

ing recent progress for both feed-forward and optimization methods, including but not

limited to: content-style trade-off and interpolation (Figure 7), color-preserving trans-

fer (Figure 10), spatial manipulation (Figure 11) and brush stroke size control (Fig-

ure 6&8). For style interpolation, we use an affine interpolation of our style embedding

following the prior work [17, 18]. For color pre-serving, we match the color of style

image with the content image as Gatys et. al. [24]. Brush-size control has been dis-

cussed in the Section 4.1. We use the segmentation mask provided by Shen et al. [51]

for spatial control. The source code and technical detail of runtime manipulation will

be included in our PyTorch implementation.



Multi-style Generative Network for Real-time Transfer 13

Fig. 12: Diverse images that are generated using a single MSG-Net-100 (2.3M parame-

ters). First row shows the input content images and the other rows are generated images

with different style targets (first column).



14 Hang Zhang1,2 Kristin Dana2

6 Conclusion and Discussion

To improve the quality and flexibility of generative models in style transfer, we intro-

duce a novel CoMatch Layer that learns to match the second order statistics as im-

age style representation. Multi-style Generative Network has achieved superior image

quality comparing to state-of-the-art approaches. In addition, the proposed MSG-Net is

compatible with most existing techniques and recent progress of stye transfer includ-

ing style interpolation, color-preserving and spatial control. Moreover, MSG-Net first

enables real-time brush-size control in a fully feed-forward manor. The compact MSG-

Net-100 model has only 2.3M parameters and runs at more than 90 fps (frame/sec) on

NVIDIA Titan Xp for the input image of size 256×256 and at 15 fps on a laptop GPU

(GTX 750M-2GB).

References

1. Li, C., Wand, M.: Combining markov random fields and convolutional neural networks for

image synthesis. In: The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). (June 2016)

2. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Computer

Vision, 1999. The Proceedings of the Seventh IEEE International Conference on. Volume 2.,

IEEE (1999) 1033–1038

3. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceed-

ings of the 28th annual conference on Computer graphics and interactive techniques, ACM

(2001) 341–346

4. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In:

Proceedings of the 27th annual conference on Computer graphics and interactive techniques,

ACM Press/Addison-Wesley Publishing Co. (2000) 479–488

5. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video

synthesis using graph cuts. In: ACM Transactions on Graphics (ToG). Volume 22., ACM

(2003) 277–286

6. De Bonet, J.S.: Multiresolution sampling procedure for analysis and synthesis of texture

images. In: Proceedings of the 24th annual conference on Computer graphics and interactive

techniques, ACM Press/Addison-Wesley Publishing Co. (1997) 361–368

7. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceedings of

the 22nd annual conference on Computer graphics and interactive techniques, ACM (1995)

229–238

8. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex

wavelet coefficients. International journal of computer vision 40(1) (2000) 49–70

9. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: A flexible architecture for multi-

scale derivative computation. In: Image Processing, 1995. Proceedings., International Con-

ference on. Volume 3., IEEE (1995) 444–447

10. Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. IEEE Transactions

on communications 31(4) (1983) 532–540

11. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks.

In: Advances in Neural Information Processing Systems. (2015) 262–270

12. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural net-

works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion. (2016) 2414–2423



Multi-style Generative Network for Real-time Transfer 15

13. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: Feed-forward syn-

thesis of textures and stylized images. In: Int. Conf. on Machine Learning (ICML). (2016)

14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-

resolution. In: European Conference on Computer Vision. (2016)

15. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative ad-

versarial networks. In: European Conference on Computer Vision, Springer (2016) 702–716

16. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved texture networks: Maximizing quality and

diversity in feed-forward stylization and texture synthesis. arXiv preprint arXiv:1701.02096

(2017)

17. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. (2016)

18. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normal-

ization. arXiv preprint arXiv:1703.06868 (2017)

19. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: Stylebank: An explicit representation for neural

image style transfer. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). (2017)

20. Chen, T.Q., Schmidt, M.: Fast patch-based style transfer of arbitrary style. arXiv preprint

arXiv:1612.04337 (2016)

21. Jing, Y., Yang, Y., Feng, Z., Ye, J., Song, M.: Neural style transfer: A review. arXiv preprint

arXiv:1705.04058 (2017)

22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmenta-

tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

(2015) 3431–3440

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2016)

770–778

24. Gatys, L.A., Bethge, M., Hertzmann, A., Shechtman, E.: Preserving color in neural artistic

style transfer. arXiv preprint arXiv:1606.05897 (2016)

25. Gatys, L.A., Ecker, A.S., Bethge, M., Hertzmann, A., Shechtman, E.: Controlling perceptual

factors in neural style transfer. arXiv preprint arXiv:1611.07865 (2016)

26. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional ad-

versarial networks. arXiv preprint arXiv:1611.07004 (2016)

27. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: Stackgan: Text to

photo-realistic image synthesis with stacked generative adversarial networks. arXiv preprint

arXiv:1612.03242 (2016)

28. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for

video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. (2016) 1933–1941

29. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., Bengio, Y.: Generative adversarial nets. In: Advances in neural information processing

systems. (2014) 2672–2680

30. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adversarial

networks. arXiv preprint arXiv:1612.02136 (2016)

31. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convo-

lutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

32. Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., Belongie, S.: Stacked generative adversarial

networks. arXiv (2016)

33. Sindagi, V.A., Patel, V.M.: Generating high-quality crowd density maps using contextual

pyramid cnns. In: 2017 IEEE International Conference on Computer Vision (ICCV), IEEE

(2017)

34. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adver-

sarial network. arXiv preprint arXiv:1701.05957 (2017)



16 Hang Zhang1,2 Kristin Dana2

35. Xian, W., Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Texturegan: Controlling deep image

synthesis with texture patches. arXiv preprint (2018)

36. Zhang, Z., Xie, Y., Yang, L.: Photographic text-to-image synthesis with a hierarchically-

nested adversarial network. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). (2018)

37. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense

network. arXiv preprint arXiv:1802.07412 (2018)

38. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). (2018)

39. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan: Fine-grained

text to image generation with attentional generative adversarial networks. arXiv preprint

(2017)

40. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill (2016)

41. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Euro-

pean Conference on Computer Vision, Springer (2016) 630–645

42. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

(2015) 5188–5196

43. Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Non-local kernel regression for image and video

restoration. In: European Conference on Computer Vision, Springer (2010) 566–579

44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556 (2014)

45. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,

C.L.: Microsoft coco: Common objects in context. In: European Conference on Computer

Vision, Springer (2014) 740–755

46. Duck, S.Y.: Painter by numbers. https://www.kaggle.com/c/painter-by-numbers (2016)

47. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)

48. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for machine

learning. In: BigLearn, NIPS Workshop. Number EPFL-CONF-192376 (2011)

49. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,

Antiga, L., Lerer, A.: Automatic differentiation in pytorch. (2017)

50. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., Zhang,

Z.: Mxnet: A flexible and efficient machine learning library for heterogeneous distributed

systems. arXiv preprint arXiv:1512.01274 (2015)

51. Shen, X., Hertzmann, A., Jia, J., Paris, S., Price, B., Shechtman, E., Sachs, I.: Automatic

portrait segmentation for image stylization. In: Computer Graphics Forum. Volume 35.,

Wiley Online Library (2016) 93–102

52. Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal, A.: Context encod-

ing for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). (June 2018)


