
Compact Deep Aggregation for Set Retrieval

Yujie Zhong1, Relja Arandjelović2, and Andrew Zisserman1

1 Visual Geometry Group, Department of Engineering Science, University of Oxford, UK

{yujie,az}@robots.ox.ac.uk
2 DeepMind

relja@google.com

Abstract. The objective of this work is to learn a compact embedding of a set of

descriptors that is suitable for efficient retrieval and ranking, whilst maintaining

discriminability of the individual descriptors. We focus on a specific example of

this general problem – that of retrieving images containing multiple faces from a

large scale dataset of images. Here the set consists of the face descriptors in each

image, and given a query for multiple identities, the goal is then to retrieve, in

order, images which contain all the identities, all but one, etc.

To this end, we make the following contributions: first, we propose a CNN ar-

chitecture – SetNet – to achieve the objective: it learns face descriptors and their

aggregation over a set to produce a compact fixed length descriptor designed for

set retrieval, and the score of an image is a count of the number of identities that

match the query; second, we show that this compact descriptor has minimal loss

of discriminability up to two faces per image, and degrades slowly after that – far

exceeding a number of baselines; third, we explore the speed vs. retrieval quality

trade-off for set retrieval using this compact descriptor; and, finally, we collect

and annotate a large dataset of images containing various number of celebrities,

which we use for evaluation and will be publicly released.

1 Introduction

Suppose we wish to retrieve all images in a very large collection of personal photos

that contain a particular set of people, such as a group of friends or a family. Then we

would like the retrieved images that contain all of the set to be ranked first, followed by

images containing subsets, e.g. if there are three friends in the query, then first would be

images containing all three friends, then images containing two of the three, followed

by images containing only one of them. We would also like this retrieval to happen in

real time.

This is an example of a set retrieval problem: each image contains a set of elements

(faces in this case), and we wish to order the images according to a query (on multiple

identities) such that those images satisfying the query completely are ranked first (i.e.

those images that contain all the identities of the query), followed by images that satisfy

all but one of the query identities, etc. An example of this ranking is shown in Fig. 1 for

two queries.

We can operationalize this by scoring each face in each photo of the collection as to

whether they are one of the identities in the query. Each face is represented by a fixed

length vector, and identities are scored by logistic regression classifiers. But, consider

2 Y. Zhong, R. Arandjelović and A. Zisserman

Barbara Hershey

 Query: Top 3

Martin Freeman

 Query: Top 3

Mark Gatiss
Natalie Portman

Vincent Cassel

Fig. 1: Images ranked using set retrieval for two example queries. The query faces are given

on the left of each example column, together with their names (only for reference). Left: a query

for two identities; right: a query for three identities. The first ranked image in each case contains

all the faces in the query. Lower ranked images partially satisfy the query, and contain progres-

sively fewer faces of the query. The results are obtained using the compact set retrieval descriptor

generated by the SetNet architecture, by searching over 200k images of the Celebrity Together

dataset introduced in this paper.

the situation where the dataset is very large, containing millions or billions of images

each containing multiple faces. In this situation two aspects are crucial for real time

retrieval: first, that all operations take place in memory (not reading from disk), and

second that an efficient algorithm is used when searching for images that satisfy the

query. The problem is that storing a fixed length vector for each face in memory is

prohibitively expensive at this scale, but this cost can be significantly reduced if a fixed

length vector is only stored for each set of faces in an image (since there are far fewer

images than faces). As well as reducing the memory cost this also reduces the run time

cost of the search since fewer vectors need to be scored.

So, the question we investigate in this paper is the following: can we aggregate the

set of vectors representing the multiple faces in an image into a single vector with little

loss of set-retrieval performance? If so, then the cost of both memory and retrieval can

be significantly reduced as only one vector per image (rather than one per face) have to

be stored and scored.

Although we have motivated this question by face retrieval it is quite general: there

is a set of elements, each element is represented by a vector of dimension D, and we

wish to represent this set by a single vector of dimension D′, where D′ = D in prac-

tice, without losing information essential for the task. Of course, if the total number of

elements in all sets, N , is such that N ≤ D then this certainly can be achieved pro-

vided that the set of vectors are orthogonal. However, we will consider the situation

Compact Deep Aggregation for Set Retrieval 3

commonly found in practice where N ≫ D, e.g. D is small, typically 128 (to keep the

memory footprint low), and N is in the thousands.

We make the following contributions: first, we introduce a trainable CNN architec-

ture for the set-retrieval task that is able to learn to aggregate face vectors into a fixed

length descriptor in order to minimize interference, and also is able to rank the face sets

according to how many identities are in common with the query using this descriptor.

To do this, we propose a paradigm shift where we draw motivation from image retrieval

based on local descriptors. In image retrieval, it is common practice to aggregate all lo-

cal descriptors of an image into a fixed-size image-level vector representation, such as

bag-of-words [25] and VLAD [12]; this brings both memory and speed improvements

over storing all local descriptors individually. We generalize this concept to set retrieval,

where instead of aggregating local interest point descriptors, set element descriptors are

pooled into a single fixed-size set-level representation. For the particular case of face set

retrieval, this corresponds to aggregating face descriptors into a set representation. The

novel aggregation procedure is described in Sec. 2 where compact set-level descriptors

are trained in an end-to-end manner using a ResNet-50 [8] as the base CNN.

Our second contribution is to introduce a dataset annotated with multiple faces per

images. In Sec. 3 we describe a pipeline for automatically generating a labelled dataset

of pairs (or more) of celebrities per image. This Celebrity Together dataset contains

around 200k images with more than half a million faces in total. It will be publicly

released.

The performance of the set-level descriptors is evaluated in Sec. 4. We first ‘stress

test’ the descriptors by progressively increasing the number of faces in each set, and

monitoring their retrieval performance. We also evaluate retrieval on the Celebrity To-

gether dataset, where images contain a variable number of faces, with many not cor-

responding to the queries, and explore efficient algorithms that can achieve immediate

(real-time) retrieval on very large scale datasets.

Note, although we have grounded the set retrieval problem as faces, the treatment is

quite general: it only assumes that dataset elements are represented by vectors and the

scoring function is a scalar product. We return to this point in the conclusion.

1.1 Related work

To the best of our knowledge, this paper is the first to consider the set retrieval problem.

However, the general area of image retrieval has an extensive literature that we build on

here.

One of the central problems that has been studied in large scale image instance re-

trieval is how to condense the information stored in multiple local descriptors such as

SIFT [16], into a single compact vector to represent the image. This problem has been

driven by the need to keep the memory footprint low for very large image datasets.

An early approach is to cluster descriptors into visual words and represent the image

as a histogram of word occurrences – bag-of-visual-words [25]. Performance can be

improved by aggregating local descriptors within each cluster, in representations such

as Fisher Vectors [13, 20] and VLAD [12]. In particular, VLAD – ‘Vector of Locally

Aggregated Descriptors’ by Jégou et al. [12] and its improvements [2, 5, 14] was used

4 Y. Zhong, R. Arandjelović and A. Zisserman

to obtain very compact descriptions via dimensionality reduction by PCA, consider-

ably reducing the memory requirements compared to earlier bag-of-words based meth-

ods [18, 22, 25]. VLAD has superior ability in maintaining the information about indi-

vidual local descriptors while performing aggressive dimensionality reduction.

VLAD has recently been adapted into a differentiable CNN layer, NetVLAD [1],

making it end-to-end trainable. We incorporate a modified form of the NetVLAD layer

in our SetNet architecture. An alternative, but related, very recent approach is the mem-

ory vector formulation of [10], but we have not employed it here as it has not been made

differentiable yet.

Another strand of research we build on is category level retrieval, where in our

case the category is a face. This is another classical area of interest with many related

works [4, 21, 28, 30, 32]. For the case of faces, the feature vector is produced from the

face region using a CNN trained to classify or embed faces [19, 24, 27].

Also relevant are works that explicitly deal with sets of vectors. Kondor and Je-

bara [15] developed a kernel between vector sets by characterising each set as a Gaus-

sian in some Hilbert space. However, their set representation cannot currently be com-

bined with CNNs and trained in an end-to-end fashion. Recently, Zaheer et al. [31] in-

vestigate permutation-invariant objective functions for operating on sets, although their

method boils down to average pooling of input vectors, which we compare to as a base-

line. Rezatofighi et al. [7] consider the problem of predicting sets, i.e. having a network

which outputs sets, rather than our case where a set of elements is an input to be pro-

cessed and described with a single vector.

2 SetNet – a CNN for set retrieval

As described in the previous section, using a single fixed-size vector to represent a set of

vectors is a highly appealing approach due to its superior speed and memory footprint

over storing a descriptor-per-element. In this section, we propose a CNN architecture,

SetNet, for the end-task of set retrieval. There are two objectives:

1. To learn the element descriptors together with the aggregation in order to minimise

the loss in face classification performance between using individual descriptors for each

face, and an aggregated descriptor for the set of faces. This is achieved by training

the network for this task, using an architecture combining ResNet for the individual

descriptors together with NetVLAD for the aggregation.

2. To be able to rank the images using the aggregated descriptor in order of the number

of faces in each image that correspond to the identities in the query. This is achieved by

scoring each face using a logistic regression classifier. Since the score of each classifier

lies between 0 and 1, the score for the image can simply be computed as the sum of the

individual scores, and this summed score determines the ranking function.

As an example of the scoring function, if the search is for two identities and an

image contains faces of both of them (and maybe other faces as well), then the ideal

score for each relevant face would be one, and the sum of scores for the image would

be two. If an image only contains one of the identities, then the sum of the scores would

be one. The images with higher summed scores are then ranked higher and this naturally

orders the images by the number of faces it contains that satisfy the query.

Compact Deep Aggregation for Set Retrieval 5

To deploy the set level descriptor for retrieval in a large scale dataset, there are two

stages:

Offline: SetNet is used to compute face descriptors for each face in an image, and ag-

gregate them to generate a set-vector representing the image. This procedure is carried

out for every image in the dataset, so that each image is represented by a single vector.

At run-time, to search for an identity, a face descriptor is computed for the query face

using SetNet, and a logistic regression classifier used to score each image based on the

scalar product between its set-vector and the query face descriptor. Searching with a set

of identities amounts to summing up the image scores of each query identity.

2.1 SetNet architecture

In this section we introduce our CNN architecture, designed to aggregate multiple el-

ement (face) descriptors into a single fixed-size set representation. The SetNet archi-

tecture (Fig. 2) conceptually has two parts: (i) each face is passed through a feature

extractor network separately, producing one descriptor per face; (ii) the multiple face

descriptors are aggregated into a single compact vector using a modified NetVLAD

layer, followed by a trained dimensionality reduction. At training time, we add a third

part which emulates the run-time use of logistic regression classifiers. All three parts of

the architecture are described in more detail next.

Feature extraction. The first part is a modified ResNet-50 [8] chopped after the global

average pooling layer. The ResNet-50 is modified to produce 128-D vectors in order to

keep the dimensionality of our feature vectors relatively low (we have not observed a

significant drop in face recognition performance from the original 2048-D descriptors).

The modification is implemented by adding a fully-connected (FC) layer of size 2048×
128 after the global average pooling layer in the original ResNet, in order to obtain

a lower dimensional face descriptor (full details of the architecture are given in the

supplementary material). In this part, individual element descriptors (x1, . . . , xF) are

obtained from ResNet, where F is the number of faces in an image.

Feature aggregation. Face features are aggregated into a single vector V using a

NetVLAD layer (illustrated in Fig. 3, and described below in Sec. 2.2). The NetVLAD

layer is slightly modified by adding an additional L2-normalization step – the total con-

tribution of each face descriptor to the aggregated sum (i.e. its weighted residuals) is

L2-normalized in order for each face descriptor to contribute equally to the final vector;

this procedure is an adaptation of residual normalization [5] of the vanilla VLAD to

NetVLAD. The NetVLAD-pooled features are reduced back to 128-D by means of a

fully-connected layer followed by batch-normalization [9], and L2-normalized to pro-

duce the final set representation vset.

Training block. At training time, an additional logistic regression loss layer is added to

mimic the run-time scenario where a logistic regression classifier is used to score each

image based on the scalar product between its set-vector and the query face descriptor.

Note, SetNet is used to generate both the set-vector and the face descriptor. Sec. 2.3

describes the appropriate loss and training procedure in more detail.

6 Y. Zhong, R. Arandjelović and A. Zisserman

Vset (1024-D) L2N L2NL2N

BN & L2NBN & L2NBN & L2N

V6 V5

 5

 ResNet-50
 modified

feature
extractor

set representation: set (128-D)

NetVLAD Layer

FC 1024x128

CNN

aggregator

Sigmoid

Scale (w) and Shift (b)

scalar product

NetVLAD Layer

FC 1024x128

CNN CNN CNN

L2N

V4

 4 6

L2N L2N

q

...

SetNet SetNet Deployment

BN & L2N

 2 1 3

L2N

set

SetNet SetNet

Baseline Network

set

Avg Pooling

CNN CNN

L2NL2N

CNN

L2N

CNN CNN

L2NL2N

L2N

feature
extractor

score ∈ (0,1)

logistic regression classifier

L2N

dataset image query face

 ResNet-50
 modified

Fig. 2: SetNet architecture and training. Left: SetNet – features are extracted from each face

in an image using a modified ResNet-50. They are aggregated using a modified NetVLAD layer

into a single 1024-D vector which is then reduced to 128-D via a fully connected dimensionality

reduction layer, and L2-normalized to obtain the final image-level compact representation. Right

(top): at test time, a query descriptor, vq , is obtained for each query face using SetNet (the face

is considered as a single-element set), and the dataset image is scored by a logistic regression

classifier on the scalar product between the query descriptor vq and image set descriptor vset.

The final score of an image is then obtained by summing the scores of all the query identities.

Right (bottom): the baseline network has the same feature extractor as SetNet, but the feature

aggregator uses an average-pooling layer, rather than NetVLAD.

2.2 NetVLAD trainable pooling

NetVLAD has been shown to outperform sum and max pooling for the same vector

dimensionality, which makes it perfectly suited for our task. Here we provide a brief

overview of NetVLAD, for full details please refer to [1].

Compact Deep Aggregation for Set Retrieval 7

conv(a, b)
1 x 1 x D x K soft-max aggregation

residual
computation

L2
normalization

soft-assignment

x1, …, xF V

X

Fig. 3: NetVLAD layer. Illustration of the NetVLAD layer [1], corresponding to equation (1),

and slightly modified to perform L2-normalization before aggregation; see Sec. 2.2 for details.

For F D-dimensional input descriptors {xi} and a chosen number of clusters K,

NetVLAD pooling produces a single D × K vector V (for convenience written as a

D ×K matrix) according to the following equation:

V (j, k) =

F∑

i=1

ea
T

k
xi+bk

∑
k′ e

aT

k′
xi+b

k′

(xi(j)− ck(j)) (1)

where {ak}, {bk} and {ck} are trainable parameters for k ∈ [1, 2, . . . ,K]. The first

term corresponds to the soft-assignment weight of the input vector xi for cluster k,

while the second term computes the residual between the vector and the cluster centre.

Finally, the vector is L2-normalized.

2.3 Loss function and training procedure

In order to achieve the two objectives outlined at the beginning of Sec. 2, a Multi-label

logistic regression loss is used. Suppose a particular training image contains F faces,

and the mini-batch consists of faces for P identities. Then in a forward pass at training

time, the descriptors for the F faces are aggregated into a single feature vector, vset,
using the SetNet architecture, and a face descriptor, vf , is computed using SetNet for

each of the faces of the P identities. The training image is then scored for each face

f by applying a logistic regressor classifier to the scalar product vTsetvf , and the score

should ideally be one for each of the F identities in the image, and zero for the other

P − F faces. The loss measures the deviation from this ideal score, and the network

learns to achieve this by maintaining the discriminability for individual face descriptors

after aggregation.

In detail, incorporating the loss is achieved by adding an additional layer at training

time which contains a logistic regression loss for each of the P training identities, and

is trained together with the rest of the network.

Multi-label logistic regression loss. For each training image (set of faces), the value

of the loss is:

−

P∑

f=1

yf log(σ(w(v
T
f vset) + b)) + (1− yf) log(1− σ(w(vTf vset) + b)) (2)

8 Y. Zhong, R. Arandjelović and A. Zisserman

where σ(s) = 1/(1 + exp(−s)) is a logistic function, P is the number of face descrip-

tors (the size of the mini-batches at training), and w and b are the scaling factor and

shifting bias respectively of the logistic regression classifier, and yf is a binary indica-

tor whether face f is in the image or not. Note that multiple yf ’s are equal to 1 if there

are multiple faces which correspond to the identities in the image.

2.4 Implementation details

This section gives full details of the training procedure, including how the network is

used at run-time to rank the dataset images given query examples.

Training data. The network is trained using faces from the training partition of the VG-

GFace2 dataset [3]. This consists of 8631 identities, with on average 360 face samples

for each identity.

Balancing positives and negatives. For each training image (face set) there are many

more negatives (the P − F identities outside of the image set) than positives (identities

in the set), i.e. most yf ’s in eq. (2) are equal to 0 with only a few 1’s. To restore balance,

the contributions of the positives and negatives to the loss function is down-weighted

by their respective counts.

Initialization and pre-training. A good (and necessary) initialization for the network

is obtained as follows. The face feature extraction block is pretrained for single face

classification on the VGGFace2 Dataset [3] using softmax loss. The NetVLAD layer,

with K = 8 clusters, is initialized using k-means as in [1]. The fully-connected layer,

used to reduce the NetVLAD dimensionality to 128-D, is initialized by PCA, i.e. by

arranging the first 128 principal components into the weight matrix. Finally, the en-

tire SetNet is trained for face aggregation using the Multi-label logistic regression loss

(Sec. 2.3).

Training details. Training requires face set descriptors computed for each image, and

query faces (which may or may not occur in the image). The network is trained on syn-

thetic face sets which are built by randomly sampling identities (e.g. two identities per

image). For each identity in a synthetic set, two faces are randomly sampled (from the

average of 360 for each identity): one contributes to the set descriptor (by combining

it with samples of the other identities), the other is used as a query face, and its scalar

product is computed with all the set descriptors in the same mini-batch. In our exper-

iments, each mini-batch contains 84 faces. Stochastic gradient descent is used to train

the network (implemented in MatConvNet [29]), with weight decay 0.001, momentum

0.9, and an initial learning rate of 0.001 for pre-training and 0.0001 for fine-tuning; the

learning rates are divided by 10 in later epochs.

Training faces are resized such that the smallest dimension is 256 and random 224×
224 crops are used as inputs to the network. To further augment the training faces,

random horizontal flipping and up to 10 degree rotation is performed. At test time,

faces are resized so that the smallest dimension is 224 and the central crop is taken.

Dataset retrieval. Suppose we wish to retrieve images containing multiple query faces

(or a subset of these). First, a face descriptor is produced by SetNet for each query

face. The face descriptors are then used to score a dataset image for each query iden-

tity, followed by summing the individual logistic regression scores to produce the final

Compact Deep Aggregation for Set Retrieval 9

(a) (c) (d)(b)

(e) (f) (g) (h)

Fig. 4: Example images of the Celebrity Together Dataset. Note that only those celebrities who

appear in the VGG Face Dataset are listed, as the rest are labelled as ‘unknown’. (a) Amy Poehler,

Anne Hathaway, Kristen Wiig, Maya Rudolph. (b) Bingbing Fan, Blake Lively. (c) Kat Dennings,

Natalie Portman, Tom Hiddleston. (d) Kathrine Narducci, Naturi Naughton, Omari Hardwick,

Sinqua Walls. Additional examples of the dataset images are given in the supplementary material.

image score. A ranked list is obtained by sorting the dataset images in non-increasing

score order. In the case where multiple face examples are available for a query identity,

the multiple descriptors produced by SetNet are simply averaged and L2-normalized to

form a richer descriptor for that query identity.

3 ‘Celebrity Together’ dataset

A new dataset, Celebrity Together, is collected and annotated. It contains images that

portray multiple celebrities simultaneously (Fig. 4 shows a sample), making it ideal for

testing set retrieval methods. Unlike the other face datasets, which exclusively contain

individual face crops, Celebrity Together is made of full images with multiple labelled

faces. It contains 194k images and 546k faces in total, averaging 2.8 faces per image.

The image collection and annotation procedures are explained next.

The dataset is created with the aim of containing multiple people per image, which

makes the image collection procedure much more complex than when building a single-

face-per-image dataset, such as [19]. The straightforward strategy of [19], which in-

volves simply searching for celebrities on an online image search engine, is inappro-

priate: consider an example of searching for Natalie Portman on Google Image Search

– all top ranked images contain only her and no other person. Here we explain how to

overcome this barrier to collect images with multiple celebrities in them.

Search string selection. We use the list of 2622 celebrities from the VGG Face Dataset

[19] and aim to download images containing at least two celebrities each. Since it is

inappropriate to query internet image search engines for single celebrities, here we

explain how to obtain sets of celebrities to search for. A straightforward approach

would be to query for all pairs of celebrities; assuming top 100 images are down-

loaded for each query, this would result in 300 million images, which is clearly pro-

hibitively time-consuming to download and exhaustively annotate. We use the fact that

only a small portion of the name pairs is actually useful as not all pairs of celebrities

have photos taken together. To obtain a list of plausible celebrity pairs, we consider

each celebrity as a “seed” in turn. For each seed-celebrity, a search is performed for

‘seed-celebrity and’ to obtain a list of images of the seed-celebrity together with

another person. The meta information associated with these images (image caption in

Google Image Search) is then scanned for other celebrity names, producing a list of

(seed-celebrity, celebrity-friend) pairs.

10 Y. Zhong, R. Arandjelović and A. Zisserman

No. faces / image 2 3 4 5 >5

No. images 113k 43k 19k 9k 10k

Table 1: Distribution of faces / image.

No. celeb / image 1 2 3 4 5 >5

No. images 88k 89k 12k 3k 0.7k 0.3k

Table 2: Distribution of annotations / image.

Image download and filtering. The list of celebrity pairs is used to query Google Im-

age Search and download the images, which are then filtered using the meta information

to contain both queried celebrities, and a face detector [17] is used to filter out images

which contain fewer than two faces. De-duplication is performed using the method of

[19], and images in common with the VGG Face Dataset [19] are removed as well.

Image annotation. Since the same list of celebrities is used as in the VGG Face Dataset

[19], we use the pre-trained Deep Face CNN [19] to aid with annotation. Combining the

very confident CNN classifications with our prior belief of who is depicted in the image

(i.e. the query terms), results in many good quality automatic annotations which fur-

ther decreases the manual annotation effort and costs. Remaining images are annotated

manually using Mechanical Turk. Full details of the annotation procedure are provided

in the supplementary material. Note that not all faces in the dataset correspond to the

2622 queried celebrities, and these are labelled as “unknown” people, but are kept in

the dataset as distractors; 41% of all faces are distractors. Table 1 shows the breakdown

of the total number of faces appearing in each image, while Table 2 shows the same

breakdown but for celebrities (i.e. people with known identities).

4 Experiments and results

In this section we investigate three aspects: first, in Sec. 4.1 we study the performance

of different models (SetNet and baselines) as the number of faces per image in the

dataset is increased. Second, we compare the performance of SetNet and the best base-

line model on the real-world Celebrity Together dataset in Sec. 4.2. Third, the trade-off

between time complexity and set retrieval quality is investigated in Sec. 4.3.

Note, in all the experiments, there is no overlap between the query identities used for

testing and the identities used for training the network, as the VGG Face Dataset [19]

(used for testing, e.g. for forming the Celebrity Together dataset) and the VGGFace2

Dataset [3] (used for training) share no common identities.

Evaluation protocol. We use Normalized Discounted Cumulative Gain (nDCG) to

evaluate set retrieval performance, as it can measure how well images containing all

the query identities and also subsets of the queries are retrieved. For this measurement,

images have different relevance, not just a binary positive/negative label; the relevance

of an image is equal to the number of query identities it contains. We report nDCG@10

and nDCG@30, where nDCG@N is the nDCG for the ranked list cropped at the top N
retrievals. nDCGs are written as percentages, so the scores range between 0 and 100.

Compact Deep Aggregation for Set Retrieval 11

4.1 Stress test

In this test, we aim to investigate how different models perform with increasing number

of faces per set (image) in the test dataset. The effects of varying the number of faces

per set used for training are also studied.

Test dataset synthesis. To this end, a base dataset with 64k face sets of 2 faces each is

synthesized, using only the face images of labelled identities in the Celebrity Together

dataset. A random sample of 100 sets of 2 identities are used as queries, taking care

that the two queried celebrities do appear together in some dataset face sets. To obtain

four datasets of varying difficulty, 0, 1, 2 and 3 distractor faces per set are sampled

from the unlabelled face images in Celebrity Together Dataset, taking care to include

only true distractor people, i.e. people who are not in the list of labelled identities in

the Celebrity Together dataset. Therefore, all four datasets contain the same number

of face sets (64k) but have a different number of faces per set, ranging from 2 to 5.

Importantly, by construction, the relevance of each set to each query is the same across

all four datasets, which makes the performance numbers comparable across them.

Methods. The SetNet models are trained as described in Sec. 2.4, where the suffix ’-2’

or ’-3’ denotes whether 2- or 3-element sets are used during training. For baselines, the

optional suffix ’+W’ indicates whether the face descriptors have been whitened and L2-

normalized before aggregation; whereas for SetNet, ’+W’ means that the set descrip-

tors are whitened. For example, SetNet-2+W is a model trained with 2-element sets

and whitening. Baselines follow the same naming convention, and use ResNet-50 with

average-pooling (i.e. the same feature extractor network, data augmentation, optional

whitening, etc.), where the architectural difference from the SetNet is that the aggre-

gator block is replaced with average-pooling followed by L2-normalization (as shown

in Fig. 2). The baselines are trained in the same manner as SetNet. The exceptions

are Baseline and Baseline+W, which simply use ResNet-50 with average-pooling, but

no training. For reference, an upper bound performance (Descriptor-per-element, see

Sec. 4.3 for details) is also reported, where no aggregation is performed and all descrip-

tors for all elements are stored. In this test, one randomly sampled face example per

query identity is used to query the dataset. The experiment is repeated 10 times using

different face examples, and the nDCG scores are averaged.

Results. From the results in Fig. 5 it is clear that SetNet-2+W and SetNet-3+W out-

perform all baselines. A similar trend also happens for nDCG@30; results for this are

included in the supplementary material. As expected, the performance of all models

decreases as the number of elements per set increases due to larger cross-element inter-

ference. However, SetNet+W deteriorates more gracefully (the margin between it and

the baselines increases), demonstrating that our training makes SetNet learn representa-

tions which minimise the interference between elements. The set training is beneficial

for all architectures, as Baseline-2+W and Baseline-3+W achieve better results than

Baseline+W which is not trained for set retrieval.

Whitening improves the performance for all architectures when there are more than

2 elements per set, which is a somewhat surprising result since adding whitening only

happens after the network is trained. However, using whitening is common in the re-

trieval community as it is usually found to be very helpful [2, 11], but has also been used

12 Y. Zhong, R. Arandjelović and A. Zisserman

(a)

Scoring model 2/set 3/set 4/set 5/set

Baseline 66.3 38.8 23.7 17.5

Baseline-2 65.8 39.7 25.6 19.0

Baseline-3 65.9 39.4 24.8 18.4

SetNet-2 71.0 57.7 44.6 36.9

SetNet-3 71.9 57.9 44.7 37.0

Baseline + W 62.3 42.3 30.8 23.3

Baseline-2 + W 62.3 44.1 32.6 25.7

Baseline-3 + W 62.1 44.0 32.3 25.6

SetNet-2 + W 71.3 59.5 47.0 39.3

SetNet-3 + W 71.8 59.8 47.1 39.3

Desc-per-element 72.4 69.4 67.1 65.3

(b)

Fig. 5: Stress test comparison of different models. There are 100 query sets, each with two

identities. (a) nDCG@10 for different number of elements (faces) per set (image) in the test

dataset. (b) Table of nDCG@10 of stress test. Columns corresponds to the four different test

datasets defined by the number of elements (faces) per set.

recently to improve CNN representations [23, 26]. It is likely that whitening before ag-

gregation is beneficial also because it makes descriptors more orthogonal to each other,

which helps to reduce the amount of information lost by aggregation. However, Set-

Net gains much less from whitening, which may indicate that it learns to produce more

orthogonal face descriptors. In the supplementary material we investigate the orthogo-

nality of descriptors further by analysing the Gram matrix computed on the identities

in the VGG Face Dataset. We observe that SetNet produces even more orthogonal de-

scriptors than the whitened baselines.

It is also important to note that, as illustrated by Fig. 5b, the cardinality of the sets

used for training does not affect the performance much, regardless of the architecture.

Therefore, training with a set size of 2 or 3 is sufficient to learn good set representations

which generalize to larger sets.

4.2 Evaluating on the Celebrity Together dataset

Here we evaluate the SetNet performance on the full Celebrity Together dataset.

Test dataset. The dataset is described in Sec. 3. To increase the retrieval difficulty,

random 355k distractor images are sampled from the MS-Celeb-1M Dataset [6], as be-

fore taking care to include only true distractor people. The sampled distractor sets are

constructed such that the number of faces per set follows the same distribution as in

the Celebrity Together dataset. The statistics of the resultant test dataset are shown in

Table 3. There are 1000 test queries, formed by randomly sampling 500 queries con-

taining two celebrities and 500 queries containing three celebrities, under the restriction

that the queried celebrities do appear together in some dataset images.

Experimental setup and baseline. In this test we consider two scenarios: first, where

only one face example is available for each query identity, and second, where three face

Compact Deep Aggregation for Set Retrieval 13

Celebrity

Together

Dist.

from

MS1M

Total

Images 194k 355k 549k

Faces 546k 1M 1546k

Table 3: Number of images

and faces in the test dataset.

The test dataset consists of the

Celebrity Together dataset and dis-

tractor images from the MS-Celeb-

1M dataset [6].

Scoring model Nex Nqd nDCG@10 nDCG@30

Baseline-2 + W 1 Q 50.0 49.4

SetNet-3 + W 1 Q 59.1 59.4

SetNet-3 + W w/ query avg. 1 1 58.7 59.4

Baseline-2 + W 3 Q 56.6 56.0

SetNet-3 + W 3 Q 63.8 64.1

SetNet-3 + W w/ query avg. 3 1 62.9 64.1

Table 4: Set retrieval performance on the test set. Q

is the number of identities in the query. There are 500

queries with Q = 2, and 500 with Q = 3. Nex is the

number of available face examples for each identity. Nqd

is the number of descriptors actually used for querying.

examples per query identity are available. In the second scenario, for each query iden-

tity, three extracted face descriptors are averaged and L2-normalized to form a single

enhanced descriptor which is then used to query the dataset. In both scenarios the exper-

iment is repeated 10 times using different face examples for each query identity, and the

nDCG score is averaged. The best baseline from the stress test (Sec. 4.1) Baseline-2+W,

is used as the main comparison method.

Results. Table 4 shows that SetNet-3+W outperforms the best baseline for all perfor-

mance measures by a large margin. Particularly impressive is the boost when only one

face example is available for each query identity, where Baseline-2+W is beaten by

9.1% and 10.0% at nDCG@10 and nDCG@30 respectively. The results demonstrate

that our trained aggregation method is indeed beneficial since it is designed and trained

end-to-end exactly for the task in hand. The improvement is also significant for the sec-

ond scenario where three face examples are available for each query identity, namely

an improvement of 7.2% and 8.1% over the baseline. Fig. 1 shows the top 3 retrieved

images out of 549k images for two examples queries using SetNet (images are cropped

for better viewing). The supplementary material contains many more examples.

Query averaging. We also investigate a more efficient method to query the database

for multiple identities. Namely, we average the descriptors of all the query identities to

produce a single descriptor which represents all query identities, and query with this

single descriptor. In the second scenario, when three face examples are available for

each query identity, all of the descriptors are simply averaged to a single descriptor.

With this query representation we obtain a slightly lower nDCG@10 compared to the

original method shown in Table 4 (62.9 vs 63.8), and the same nDCG@30 (64.1). How-

ever, as will be seen in the next section, this drop can be nullified by re-ranking, making

query averaging an attractive method due to its efficiency.

4.3 Efficient set retrieval

Our SetNet approach stores a single descriptor-per-set making it very fast though with

potentially sacrificed accuracy. This section introduces alternatives and evaluates trade-

offs between set retrieval quality and retrieval speed. To evaluate computational ef-

ficiency formally with the big-O notation, let Q, F and N be the number of query

14 Y. Zhong, R. Arandjelović and A. Zisserman

Without query averaging With query averaging

Scoring method Nr nDCG@10 nDCG@30 Timing Speedup nDCG@10 nDCG@30 Timing Speedup

Desc-per-set - 59.1 59.4 0.11s 57.5× 58.7 59.4 0.01s 635×
Desc-per-set + Re. 100 76.5 70.1 0.13s 48.8× 76.4 70.1 0.03s 212×
Desc-per-set + Re. 1000 84.2 80.0 0.20s 31.8× 84.1 80.0 0.10s 63.5×
Desc-per-set + Re. 2000 85.3 81.4 0.28s 22.7× 85.3 81.4 0.18s 35.3×
Desc-per-element - 85.4 81.7 6.35s - - - - -

Table 5: Retrieval speed vs quality trade-off with varied number of re-ranking images.

Retrieval performance, average time required to execute a set query and speedup over Desc-per-

element are shown for each method. ‘Re.’ denotes re-ranking. The evaluation is on the 1000 test

queries and on the same full dataset with distractors as in Sec. 4.2.

identities, average number of faces per dataset image, and the number of dataset im-

ages, respectively, and let the face descriptor be D-dimensional. Recall that our SetNet

produces a compact set representation which is also D-dimensional, and D = 128
throughout.

Descriptor-per-set (SetNet). Storing a single descriptor per set is very computation-

ally efficient as ranking only requires computing a scalar product between Q query

D-dimensional descriptors and each of the N dataset descriptors, passing them through

a logistic function, followed by scoring the images by the sum of similarity scores,

making this step O(NQD). For the more efficient query averaging where only one

query descriptor is used to represent all the query identities, this step is even faster with

O(ND). Sorting the scores is O(N logN). Total memory requirements are O(ND).

Descriptor-per-element. Set retrieval can also be performed by storing all element de-

scriptors, requiring O(NFD) memory. An image can be scored by obtaining all Q×F
pairs of (query-identity, image-face) scores and finding the optimal assignment by con-

sidering it as a maximal weighted matching problem in a bipartite graph. Instead of

solving the problem using the Hungarian algorithm which has computational complex-

ity that is cubic in the number of faces and is thus prohibitively slow, we use a greedy

matching approach which is O(QF log(QF)) per image. Therefore, the total computa-

tional complexity is O(NQFD+NQF log(QF)+N logN). For our problem, we do

not find any loss in retrieval performance compared to optimal matching, while being

7× faster.

Combinations by re-ranking. Borrowing ideas again from image retrieval [22, 25],

it is possible to combine the speed benefits of the faster methods with the accuracy of

the slow descriptor-per-element method by using the former for initial ranking, and the

latter to re-rank the top Nr results. The computational complexity is then equal to that

of the fast method of choice, plus O(NrQFD +NrQF log(QF) +Nr logNr).

Experimental setup. The performance is evaluated on the 1000 test queries and on

the same full dataset with distractors as in Sec. 4.2. Nr is varied in this experiment to

demonstrate the trade-off between accuracy and retrieval speed. For the descriptor-per-

element method, we use the Baseline + W features. In the supplementary material we

also discuss a naive approach of pre-tagging the dataset with a list of identities.

Compact Deep Aggregation for Set Retrieval 15

Results. Table 5 shows set retrieval results for the various methods together with the

time it takes to execute a set query. The full descriptor-per-element approach is the most

accurate one, but also prohibitively slow for most uses, taking more than 6 seconds to

execute a query. The descriptor-per-set (i.e. SetNet) approach with query averaging is

blazingly fast with only 0.01s per query using one descriptor to represent all query

identities, but sacrifices retrieval quality to achieve this speed. However, using SetNet

for initial ranking followed by re-ranking achieves good results without a significant

speed hit – the accuracy almost reaches that of the full slow descriptor-per-element,

while being more than 35× faster. Furthermore, by combining desc-per-set and desc-

per-element it is possible to choose the trade-off between speed and retrieval quality,

as appropriate for specific use cases. For a task where speed is crucial, desc-per-set

can be used with few re-ranking images (e.g. 100) to obtain a 212× speedup over the

most accurate method (desc-per-element). For an accuracy-critical task, it is possible to

re-rank more images while maintaining a reasonable speed.

5 Conclusion

We have considered a new problem of set retrieval, discussed multiple different ap-

proaches to tackle it, and evaluated them on a specific case of searching for sets of

faces. Our learnt compact set representation, produced using the SetNet architecture

and trained in a novel manner directly for the set retrieval task, beats all baselines con-

vincingly. Furthermore, due to its high speed it can be used for fast set retrieval in large

image datasets. The set retrieval problem has applications beyond multiple faces in an

image. For example, a similar situation would also apply for the task of video retrieval

when the elements themselves are images (frames), and the set is a video clip or shot.

We have also introduced a new dataset, Celebrity Together, which can be used

to evaluate set retrieval performance and to facilitate research on this new topic. The

dataset will be released publicly.

Acknowledgements This work was funded by an EPSRC studentship and EPSRC Pro-

gramme Grant Seebibyte EP/M013774/1.

Bibliography

[1] Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-

tecture for weakly supervised place recognition. In: Proc. CVPR (2016)

[2] Arandjelović, R., Zisserman, A.: All about VLAD. In: Proc. CVPR (2013)

[3] Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: A dataset

for recognising faces across pose and age. In: Proc. Int. Conf. Autom. Face and

Gesture Recog. (2018)

[4] Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details:

an evaluation of recent feature encoding methods. In: Proc. BMVC. (2011)

[5] Delhumeau, J., Gosselin, P.H., Jégou, H., Pérez, P.: Revisiting the VLAD image

representation. In: Proc. ACMM (2013)

[6] Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: A dataset and bench-

mark for large-scale face recognition. In: Proc. ECCV (2016)

[7] Hamid Rezatofighi, S., Kumar, B., Milan, A., Abbasnejad, E., Dick, A., Reid, I.:

DeepSetNet: Predicting sets with deep neural networks. In: Proc. CVPR (2017)

[8] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: Proc. CVPR (2016)

[9] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In: Proc. ICML (2015)

[10] Iscen, A., Furon, T., Gripon, V., Rabbat, M., Jégou, H.: Memory vectors for simi-

larity search in high-dimensional spaces. IEEE Transactions on Big Data (2017)

[11] Jégou, H., Chum, O.: Negative evidences and co-occurrences in image retrieval:

the benefit of PCA and whitening. In: Proc. ECCV (2012)

[12] Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a

compact image representation. In: Proc. CVPR (2010)

[13] Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregat-

ing local image descriptors into compact codes. IEEE PAMI (2011)

[14] Jégou, H., Zisserman, A.: Triangulation embedding and democratic aggregation

for image search. In: Proc. CVPR (2014)

[15] Kondor, R., Jebara, T.: A kernel between sets of vectors. In: Proc. ICML. AAAI

Press (2003)

[16] Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2),

91–110 (2004)

[17] Mathias, M., Benenson, R., Pedersoli, M., Van Gool, L.: Face detection without

bells and whistle. In: ECCV (2014)

[18] Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc.

CVPR. pp. 2161–2168 (2006)

[19] Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proc. BMVC.

(2015)

[20] Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with

compressed fisher vectors. In: Proc. CVPR (2010)

[21] Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale

image classification. In: Proc. ECCV (2010)

Compact Deep Aggregation for Set Retrieval 17

[22] Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with

large vocabularies and fast spatial matching. In: Proc. CVPR (2007)

[23] Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: Un-

supervised fine-tuning with hard examples. In: Proc. ECCV (2016)

[24] Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face

recognition and clustering. In: Proc. CVPR (2015)

[25] Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object match-

ing in videos. In: Proc. ICCV. vol. 2, pp. 1470–1477 (2003)

[26] Sun, Y., Zheng, L., Deng, W., Wang, S.: SVDNet for pedestrian retrieval. In: Proc.

ICCV (2017)

[27] Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deep-Face: Closing the gap to

human-level performance in face verification. In: IEEE CVPR (2014)

[28] Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition

using classemes. In: Proc. ECCV. pp. 776–789 (sep 2010)

[29] Vedaldi, A., Lenc, K.: MatConvNet: Convolutional neural networks for MATLAB.

In: Proc. ACMM (2015)

[30] Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear

coding for image classification. In: Proc. CVPR (2010)

[31] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., Smola,

A.: Deep sets. In: NIPS. pp. 3391–3401 (2017)

[32] Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector

coding of local image descriptors. In: Proc. ECCV (2010)

