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Abstract. Although the configuration of smartphone cameras is getting
better and better, the quality of smartphone photos still cannot match
DSLR camera photos due to the limitation of physical space, hardware
and cost. In this work, we present a fast and accurate image enhance-
ment approach based on generative adversarial nets, which elevates the
quality of photos on smartphones. We propose the lightweight local resid-
ual convolutional network to learn the mapping between ordinary photos
and DSLR-quality images. To make the generated images look real, we
introduce the perception-preserving measurement error, which compris-
es content, color, and adversarial losses. Especially, the content loss is
constituted of contextual and SSIM losses, which maintains the natural
internal statistics and the structure of images. In addition, we intro-
duce the knowledge transfer strategy to ensure the high performance of
the proposed network. The experiments demonstrate that our proposed
method produces better results compared with the state-of-the-art ap-
proaches, both qualitatively and quantitatively. The code is available at
https://github.com/Zheng222/PPCN.

Keywords: Image enhancement · Perception-preserving measurement
error · Knowledge transfer.

1 Introduction

Continuous improvement for the quality of tiny camera sensors and lens makes
smartphone photography come into vogue. However, from the viewpoint of aes-
thetics, photos captured by mobile phones still cannot attain the DSLR-quality
because of their compact sensors and lens. Larger sensors are conducive to im-
proving image quality, reducing noise and shooting night scenes. In order to au-
tomatically translate the low-quality mobile phone pictures into the high-quality
images, Andrey et al. [11] propose an end-to-end deep learning approach uses
a composite perceptual error function that combines content, color, and tex-
ture losses, where the content loss is simply defined as the VGG loss based on
the ReLU activation layers of the pre-trained 19-layer VGG network described
in [25]. The authors also present a weakly-supervised approach in [12] to over-
come the requirement of matched input/target training image pairs. Though the

https://github.com/Zheng222/PPCN
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above methods have achieved remarkable results, they still have the deficiencies
to be addressed. One of the limitations of the existing CNN-based methods is
that researchers always trying to deepen the generator network to reach bet-
ter performance, which leads to a substantial computational cost and memory
consumption which will further bring increasing power consumption. Therefore,
these methods are not conducive to real mobile phone applications. The other
cause is the artifacts and amplified noises appeared on the processed images
in [11], which affects the user experience.

To tackle these issues, we propose a novel CNN-based image enhancement
approach, which introduces the teacher-student information transfer to boost the
performance of the compact student network and contextual loss that proposed
in [23,22] to preserve the nature of images. Moreover, we combine adversarial
(GAN) [9], color, total variation losses to learn photo-realistic image quality.
Finally, to guarantee the structural preservation of the enhanced images, we
employ the SSIM loss as the constraint term.

Fig. 1. DPED image enhanced by our method.

The main contributions of the perception-preserving CNN are summarized
as follows:

– We propose a novel compact network for single image enhancement as illus-
trated in Fig. 3, which adopts 1-D separable kernels and dilated convolutions
to expand the network receptive field.

– We exploit knowledge transfer to promote the performance of the student
network.

– We employ contextual and SSIM losses to maintain the nature of the image.

– The effective network architecture for single image super-resolution is devised
as shown in Fig. 2, which can fast super-resolve the low resolution images.

– Our proposed method achieves superior performance compared with the
state-of-the-art methods.
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2 Related work

The problem of image quality enhancement is part of the image-to-image trans-
lation task. In this section, we introduce several related works from the image
transformation field.

2.1 Image enhancement

We build our solution upon recent advances in image-to-image translation net-
works. Ignatov et al. [11] propose an end-to-end enhancer achieving photo-
realistic results for arbitrary image resolutions by combining content, texture
and color losses. However, it still has its disadvantages, such as slower inference
speed, results with artifacts (color deviations and too high contrast levels) and
noises. The authors also present WESPE [12], a weakly supervised solution for
the image quality enhancement problem. This approach is trained to map low-
quality photos into the domain of high-quality photos without requiring labeled
data, only images from two different domains are needed.

2.2 Image super-resolution

Single image super-resolution aims to recover the visually pleasing high-resolution
(HR) image from a low resolution (LR) one. Dong et al. [4,5] first exploit a three-
layer convolutional neural network, named SRCNN, to approximate the complex
nonlinear mapping between the LR image and the HR counterpart. To reduce
computational complexity, the authors propose a fast SRCNN (FSRCNN) [6],
which adopts the transposed convolution to execute upscaling operation at the
output layer. Kim et al. [15] present a very deep super-resolution network (VD-
SR) with residual architecture to achieve eminent SR performance, which utilizes
broader contextual information with a larger model capacity. Lai et al. propose
the Laplacian pyramid super-resolution network (LapSRN) [17] to progressive-
ly reconstruct the sub-band residuals of high-resolution images. Tai et al. [26]
present a deep recursive residual network (DRRN), which employs the parame-
ters sharing strategy. The authors also propose a very deep end-to-end persistent
memory network (MemNet) [27] for image restoration task, which tackles the
long-term dependency problem in the previous CNN architectures. The afore-
mentioned approaches focus on promoting the objective evaluation index, while
Ledig et al. [18] achieve the photo-realistic results on super-resolution task by
using a VGG-based loss function [14] and adversarial networks [9].

2.3 Image deraining

Rain is a common weather in our life. Since it can affect the line of sight, it is a
significant task to remove the rain and recover the background from rain images
for post image processing. Recently, several deep learning based deraining meth-
ods achieve promising performance. Fu et al. [7,8] first introduce deep learning
methods to the deraining problem. Yang et al. [30] design a deep recurrent dilat-
ed network to jointly detect and remove rain steaks. Zhang et al. [34] propose a
density-aware image deraining method with the multi-stream densely connected
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network for jointly rain-density estimation and deraining. Li et al. [19] design a
scale-aware multi-stage recurrent network that estimates rain steaks of different
sizes and densities individually.

2.4 Contextual loss

Mechrez et al. [23,22] design a loss function that can measures the dissimilar-
ity between a generated image x and a target image y, represented by feature
sets X = {xi} and Y = {yi}, respectively. Let Aij denote the affinity between
features xi and yj . The Contextual loss is defined as:

LCX (x, y) = − log





1

M

∑

j

max
i

Aij



 (1)

The affinities Aij are defined in a way that promotes a single close match of
each feature yi in X. To implement this, first the Cosine distances dij are

computed between all pairs xi, yj . The distances are then normalized: d̃ij =
dij/ (minkdik + ǫ) (with ǫ = 1e−5), and finally the pairwise affinities Aij ∈ [0, 1]
are defined as:

Aij =
exp

(

1− d̃ij/h
)

∑

l exp
(

1− d̃il/h
) =

{

≈ 1 if d̃ij≪ d̃il ∀l 6= j

≈ 0 otherwise
(2)

where h > 0 is a bandwidth parameter.

2.5 Knowledge transfer

This line of research aims at distilling knowledge from a complicated teach-
er model into a compact student model without performance drop. Recently,
Zagoruyko et al. [32] present several ways of transferring attention from one net-
work to another over several image recognition datasets. Yim et al. [31] propose a
novel approach to generate distilled knowledge from the DNN, which determines
the distilled knowledge as the flow of the solving procedure calculated with the
proposed FSP matrix.

3 Proposed method

In this section, we first describe the proposed solution for single image super-
resolution (SR) task and then introduce the image quality enhancement on s-
martphones.

3.1 Single image super-resolution

As shown in Fig. 2, the presented SR method first adopts two convolutional
layers with stride 2 to reduce the resolutions of feature maps. This way can
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Fig. 2. The schematics of the proposed network for image super-resolution.

dramatically decrease the computational cost during the testing phase. The fol-
lowing operations are two residual blocks, each of them consists of two residual
modules and one transition convolution. Finally, we employ a global residual for
fast model optimization and an upsampler that is composed of two convolutions
with 3× 3 kernels and the sub-pixel convolution [24].

When it comes to the loss function, mean absolute error (MAE) and struc-
tural similarity index (SSIM) loss are applied to our SR methods. Given a train-

ing set
{

IiLR, I
i
HR

}N

i=1
, which contains N LR inputs and their counterparts. The

L1 loss can be formulated as follows:

LMAE =
1

N

N
∑

i=1

∥

∥IiHR −G
(

IiLR

)∥

∥

1
, (3)

where G denotes the proposed SR network. In addition, SSIM loss is as follows:

LSSIM =
1

N

N
∑

i=1

1− SSIM
(

IiHR, G
(

IiLR

))

, (4)

where,

SSIM (x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ2
x + σ2

y + C2
, (5)

where µx, µy are the mean, σxy is the covariance of x and y and C1, C2 are
constants. Therefore, the total loss can be expressed as

Ltotal = LMAE + 25LSSIM (6)

3.2 Single image enhancement

For image quality enhancement, we devote to adjusting the contrast, suppressing
noises and enhancing the image details. Considering that the time performance
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is a vital aspect of image processing on smartphones with limited computational
sources, the enhancer must be lightweight and efficient. Moreover, since the
resolutions of inputs are arbitrary, the model should be the fully convolutional
network. Thus, we prune our generator (student) as much as possible. In Fig. 3,
the upper model indicates teacher generator with more convolution filters and
the below one denotes student generator that is more compact. This topological
structure is conducive to elevate the quantitative and qualitative performances
of student generator without increasing parameters and computational cost.
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Fig. 3. The structure of the proposed generator for image enhancement.
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Fig. 4. The structure of the proposed discriminator for image enhancement.

Another core of this method is loss functions. In consideration of making
the enhanced picture more photo-realistic, we follow the practice of Ignatov et
al. [11], i.e., assume the overall perceptual image quality can be resolved into
three portions: i) content quality, ii) texture quality and iii) color quailty.

Content loss Inspired by [23,22], we choose contextual loss based on layer
’conv4 2’ of the VGG-19 network [25]. In addition, to perverse the structural
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information of images, SSIM loss mentioned in Eq. 4 is also utilized. Thus, the
content loss can be defined as

Lcontent =
4

N

N
∑

i=1

LCX

(

G
(

Iiinput
)

, Iit arg et

)

+ 25LSSIM , (7)

where Iiinput and Iit arg et constitute the training pairs
{

Iiinput, I
i
t arg et

}N

i=1
, G rep-

resents the generator for image quality enhancement.

Texture loss Image texture quality is addressed by an adversarial discrimina-
tor as depicted in Fig. 4, which simply consists of 6 convolutional layers with
leaky ReLU, 2 fully connected layers, and a sigmoid function. Following the way
in [11,12], this discriminator is applied to grayscale images and is trained to
identify the authenticity of a given image. The texture loss is defined as:

Ltexture = −
∑

i

logD
(

G
(

Iiinput
))

, (8)

where D is the discriminator as illustrated in Fig. 4.

Color loss Image color quality is measured by MSE function that is trained
to minimize the difference between the blurred versions of the low-quality input
Iinput and the high-quality target Itarget. The blurred input can be expressed as

Iinput b =
∑

k,l

Iinput (i+ k, j + l) ·Gk,l, (9)

where Gk,l = A exp
(

− (k−µx)
2

2σx

−
(l−µy)

2

2σy

)

indicates Gaussian blur with A =

0.053, µx,y = 0, and σx,y = 3 proposed in [11,12]. Therefore, color loss can be
written as:

Lcolor = ‖Iinput b − It arg et b‖
2
2 . (10)

Tv loss To suppress noises of the generated images we add a total variation
loss [2] defined as follows:

Ltv =
1

CHW
‖∇xG (Iinput) +∇yG (Iinput)‖ , (11)

where C, H, W are the dimensions of the enhanced image G (Iinput).

Kd loss The knowledge distillation loss is used to boost the performance of
student model and is defined as follows:

Lkd =
∑

j∈J

∥

∥

∥

∥

∥

∥

Qj
S

∥

∥

∥Q
j
S

∥

∥

∥

2

−
Qj

T
∥

∥

∥Q
j
T

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

2

, (12)



8 Zheng Hui et al.

where Qj
S = vec

(

F
(

Aj
S

))

and Qj
T = vec

(

F
(

Aj
T

))

are respectively the j-th

pair of student and teacher mean feature maps in vectorized form, and F (A) =
1
C

∑C
i=1 Ai.

Sum of losses We formulate the total loss as the weighted sum of aforemen-
tioned losses as:

Ltotal = 10Lcontent + Ltexture + Lcolor + 2× 103Ltv + 75Lkd. (13)

4 Experiments

4.1 Datasets

Image super-resolution task For the instructions of the Perceptual Image
Restoration and Manipulation (PIRM) challenges on Perceptual Enhancement
on Smartphones1 [13], we use the DIV2K dataset [1,28,29], which consists of
1000 high-quality RGB images (800 training images, 100 validation images, and
100 test images) with 2K resolution. HR image patches from HR images with
the size of 384 × 384 are randomly sampled for training. An HR image patch
and its corresponding LR image patch are treated as a training pair.

For testing, we evaluate the performance of our network on five widely used
benchmark datasets: Set5 [3], Set14 [33], BSD100 [20], Urban100 [10], and Man-
ga109 [21].

Image enhancement task As for image enhancement task, we use the DPED
dataset [11], which contains patches of size 100 × 100 pixels for CNN training
(139K, 160K and 162K pairs for BlackBerry, iPhone, and Sony, respectively).
In this work, according to the illustration of the challenge, we consider only a
sub-task of improving images from a very low-quality iPhone 3GS device. As for
testing, we use the 400 patches provided by challenge2.

4.2 Implementation and Training Details

Image super-resolution task We randomly extract 16 LR RGB patches with
the size of 96× 96 and interpolate them bicubically with the upscaling factor of
4. We augment LR patches with a random horizontal flip and 90 degree rotation.
Experimentally, we set the initial learning rate to 5× 10−4 and decreases by the
factor 5 for every 1000 epochs (5 × 104 iterations). The Adam optimizer [16]
with β1 = 0.9, β2 = 0.999 is used to train our model.

1 http://ai-benchmark.com/challenge.html
2 https://github.com/aiff22/ai-challenge

http://ai-benchmark.com/challenge.html
https://github.com/aiff22/ai-challenge
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Image enhancement task Drawing on the experience of [11], we take 50 image
patches with the size of 100 × 100 as inputs. The learning rate is initialized to
5 × 10−4 for all layers and decreases by the factor 10 for every 104 iterations.
We use the Adam optimizer [16] with β1 = 0.9, β2 = 0.999, and ǫ = 10−8 for
training. To improve the performance of the student, we first train the teacher
with the same training hyper-parameters and then use it to guide the training
of the student network by using Eq. 12.

All the experiments are implemented in the platform Ubuntu 16.04 operation
system, TensorFlow 1.8 development environment, 3.7GHz Intel i7-8700k CPU,
64 GB memory and Nvidia GTX1080Ti GPU.

4.3 Comparison with baseline methods

Table 1. Quantitative evaluation results in terms of PSNR and SSIM. Red and blue
colors indicates the best and second best methods, respectively.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRCNN [5] ×4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN [6] ×4 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR [15] ×4 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8870

Ours ×4 31.37 0.8835 28.11 0.7698 27.24 0.7246 25.18 0.7542 28.93 0.8847

Urban100 (4×):
img 090

HR Bicubic SRCNN [4,5]
PSNR/SSIM 30.49/0.8864 32.85/0.9303

FSRCNN [6] VDSR [15] Ours
33.37/0.9356 35.03/0.9604 36.26/0.9653

Fig. 5. Visual comparison for 4× SR on Urban100 dataset.

Image super-resolution task To evaluate the performance of our proposed
SR network, we use two baseline approaches SRCNN [4,5] and VDSR [15]. Tab. 1
shows the average PSNR and SSIM values on five benchmark datasets with the
scaling factor of 4. From this table, we can see that the proposed method per-
forms favorably against benchmark results. Tab. 2 indicates our solution better
leverages the execution speed and the performance. In Fig. 5, it is obvious that
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BSD100 (4×):
302008

HR Bicubic SRCNN [4,5]
PSNR/SSIM 27.31/0.8940 30.55/0.9307

FSRCNN [6] VDSR [15] Ours
31.38/0.9322 32.13/0.9439 32.65/0.9449

Fig. 6. Visual comparison for 4× SR on B100 dataset.

Table 2. Performance of our method on track A.

Track A:Image Super-Resolution

Team PSNR MS-SSIM CPU, ms GPU, ms Score A Score B Score C

SRCNN-Baseline 27.21 0.9552 3239 205 5.33 7.77 5.93

Rainbow (Ours) 28.13 0.9632 654 56 12.84 14.92 13.91

Table 3. The effectiveness of knowledge transfer.

Method PSNR MS-SSIM CPU, ms

O
u
rs

Teacher 22.96 0.9299 1182
Student 22.54 0.9244 392
Student w/o knowledge transfer 22.34 0.9229 445
Student with L1 and VGG losses3 22.37 0.9231 478

O
th
er
s SRCNN-Baseline 21.32 0.9030 1832

DPED-Baseline 22.17 0.9204 10701
ResNet 8 32 22.38 0.9156 3226

the fidelity of geometric structure in our result is superior to the other methods.

Image enhancement task In order to better transfer the model to practical
application, we must weigh the performance and the speed of image enhance-

3 This is the final submitted model in the challenge, where L1 loss can be ex-

pressed as Ll1 = 1

N

N
∑

i=1

∥

∥Iit arg et −G
(

Iiinput

)
∥

∥

1
and VGG loss is formulated as

Lvgg = ‖φl (It arg et)− φl (G (Iinput))‖
2

2
.
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iPhone DPED-Baseline [11]

Student Teacher

Fig. 7. Visual qualitative comparison of the “7” image in DPED test images.

ment. From Tab. 3, the teacher network achieves high performance in terms of
PSNR and MS-SSIM, but the execution speed is slightly slow. It is worth noting
that the student model with L1 and VGG losses is our submitted version in
the challenge. We experimentally find that when removing these two losses, the
performance of the proposed student net can be prominently improved as shown
in the third row of Tab. 3. Considering time testing, three student models have
the same computational complexity, and the differences in Tab. 3 are caused by
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iPhone DPED-Baseline [11]

Student Teacher

Fig. 8. Visual qualitative comparison of the “8” image in DPED test images.

test errors. In Fig. 7, the generated result of the teacher model performs more
realistic and the wood grain is clearer. But in terms of color saturation, the
student network performs better. The DPED [11] produces color deviations in
Fig. 8, whereas the student model successfully suppresses this typical artifact.

Previous results of our student model with L1 and VGG losses is shown in
Tab. 4, which ranks 2nd in the challenge. Trained with losses in Eq. 13, we
improve our model as showon in Tab. 3.
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iPhone DPED-Baseline [11]

Student Teacher

Fig. 9. Visual qualitative comparison of the “10” image in DPED test images.

4.4 Ablation study

Effectiveness of knowledge transfer To demonstrate the effectiveness of the
proposed knowledge transfer, we remove Kd loss in the training of student model
while the network structure and other losses remain unchanged. Tab. 3 shows
the effectiveness of knowledge transfer. From the visual assessment as shown in
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Student Student w/o kd Student with L1 and VGG

Fig. 10. Result images for three student models.

Table 4. Performance of our method on track B.

Track B:Image Enhancement

Team PSNR MS-SSIM MOS CPU, ms GPU, ms Score A Score B Score C

SRCNN-Baseline 21.31 0.8929 2.295 3274 204 3.22 2.29 3.49

DPED-Baseline 21.38 0.9034 2.4411 20462 1517 2.89 4.9 3.32

Rainbow (Ours) 21.85 0.9067 2.5583 828 111 13.19 16.31 16.93

Fig. 10, the image generated by the student model is more saturated in color
and more expressive.

4.5 Limitations

Although visually realistic, the reconstructed images may contain emphasized
high-frequency noise (see generated image of Teacher model in Fig. 8). It’s re-
markable that the produced image of Student model successfully suppresses the
noises, but the result appears smooth (Fig. 9).

5 Conclusions

In this paper, we propose the perception-preserving convolution network (PPCN)
to enhance the image quality. Specifically, we devise a novel lightweight archi-
tecture that directly maps the low-quality images to the DSLR-quality coun-
terparts to adapt to the environment with limited resource. To attain a more
realistic visual effect, we introduce contextual and SSIM losses as the content
loss. Furthermore, to improve the ability of the network, we adopt the knowledge
transfer strategy, which enables the student model to learn information from the
pre-trained teacher network. In addition, we propose a compact network for
super-resolution task. Extensive experiments demonstrate the effectiveness of
our proposed models.
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