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Abstract. Recent advances have shown the great power of deep con-
volutional neural networks (CNN) to learn the relationship between low
and high-resolution image patches. However, these methods only take a
single-scale image as input and require large amount of data to train
without the risk of overfitting. In this paper, we tackle the problem
of multi-modal spectral image super-resolution while constraining our-
selves to a small dataset. We propose the use of different modalities
to improve the performance of neural networks on the spectral super-
resolution problem. First, we use multiple downscaled versions of the
same image to infer a better high-resolution image for training, we refer
to these inputs as a multi-scale modality. Furthermore, color images are
usually taken at a higher resolution than spectral images, so we make use
of color images as another modality to improve the super-resolution net-
work. By combining both modalities, we build a pipeline that learns to
super-resolve using multi-scale spectral inputs guided by a color image.
Finally, we validate our method and show that it is economic in terms of
parameters and computation time, while still producing state-of-the-art
results.1

Keywords: Spectral Reconstruction, Spectral Image Super-Resolution,
Residual Learning, Image Completion, Multi-Modality

1 Introduction

In this paper, we address spatial image super-resolution for spectral images. We
tackle the problem posed by the PIRM2018 Spectral Image Challenge [20, 19]
for reconstructing high-resolution spectral images from twice (LR2) and thrice
(LR3) downscaled versions. The challenge has two tracks. The first (Track1) asks
to super-resolve from only the spectral low-resolution images, and the second
(Track2) provides a guided super-resolution challenge using a high-resolution 3-
channel color image in addition to the low-resolution spectral data. Both tracks
contain a small number of images, so one of the main obstacles in this challenge
is to improve the generalization of the algorithms on a limited dataset.

Single-image super-resolution is an active research area with a wide range of
applications in areas such as astronomy, medical imaging, or image enhancement.

⋆ Both authors contribute equally to this work.
1 Code at https://github.com/IVRL/Multi-Modal-Spectral-Image-Super-Resolution.
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Fig. 1. The proposed framework: our super-resolution algorithm is able to reconstruct
high-quality, high-resolution spectral images by taking advantage of multi-modal data
consisting of multi-scale spectral images and color images.

The goal is to infer, from a single low-resolution (LR) image, the missing high
frequency content that would correspond to its high-resolution counterpart (HR).
The problem itself is inherently ill-posed since there are multiple reconstructions
that could lead to the same low-resolution observation.

Deep learning involves the design of large scale networks for a variety of image
reconstruction problems. To this end, deep neural networks were applied to the
super-resolution task. For example, in Dong et al. [4], the training set included
LR inputs and their corresponding HR output images, where the inputs are
upscaled to the correct resolution using bicubic interpolation. The network only
takes one low-resolution image with a fixed downscaling factor as input. Here,
we use an image completion algorithm [1] to fuse low-resolution spectral images
with different downscaling factors to reconstruct a better upscaled input.

In addition, SRCNN [4] has other limitations such as slow convergence and
a small receptive field because of its shallow architecture. Deep residual learn-
ing [9] was initially proposed to solve the performance degradation as network
depth increases, and has shown to increase accuracy on image classification and
object detection methods. Here, we use residual learning to reconstruct the resid-
uals between the LR and HR images, rather than learning how to rebuild the
HR image from LR. Our assumption is that learning the residual mapping is
much easier than learning the original HR image. Furthermore, multiple image
restoration tasks such as VDSR [13], DnCNN [25], and DWSR [7] use residual
connections from the input to the output and reduce their training time through
faster convergence. By combining the image completion upscaling method with
residual learning, we build a model suited for multi-scale image super-resolution.

One often can obtain a high spatial resolution panchromatic image accompa-
nying the multi-spectral low resolution image. The fusion of both images allows
obtaining both high spatial and spectral resolution images. This is helpful for
many remote-sensing applications like agriculture, earth exploration, and astron-
omy. We make use of a 3-color RGB high spatial resolution image to guide the
super-resolution of the 14-band low-resolution spectral images in Track2 of the
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challenge. Thus, we design our pipeline to incorporate the guiding images to
achieve higher performance on top of our previous residual network results.

In this paper, we propose an efficient framework for multi-modal spectral im-
age super-resolution shown in Fig. 1. The main contributions of this paper are the
following: 1) We build a residual learning network suitable for super-resolution
due to the sparse nature of the problem. 2) We design a data preprocessing
approach that can fuse multi-scale images in order to create an upscaled input
image to the network. This approach combines the information from multi-scale
modalities with an image completion algorithm to provide a candidate image to
the network that performs better than the typical bicubic interpolation. 3) We
build a two-stage pipeline for guided super-resolution under consideration that
very few data samples containing guiding information are available. The frame-
work resembles transfer learning, as it allows to transfer information learned
using one modality to another to compensate the lack of data.

2 Related Work

Single-image super-resolution corresponds is about upscaling a single low-resolution
image to a higher spatial resolution. Typically, the image is in grayscale (1-
channel) or in color (3-channel). This field has been studied for decades, so a
large amount of literature exists. While early methods attempted to construct an
efficient upscaling function using image statistics, recent trends have shown that
learning to super-resolve using CNNs has a better performance than prior tech-
niques [4, 11, 12, 16]. The architecture of the network affects the performance, as
well as the loss function used. For instance, the authors in [26] have shown that
L2 loss doesn’t give the best PSNR results even though they are directly related.

Our work has some relation to the conventional problem of single-image
super-resolution, however it is done for images with high spectral resolution (14
channels). While this does not change the nature of the problem, the fact that
we are fusing multi-scale inputs and predicting on a larger number of channels
requires adapting the model and loss functions to account for these factors.

Due to hardware limitations, high spectral resolution images come at the cost
of lower spatial resolution. To mitigate this problem, they are often combined
with higher spatial but lower spectral resolution images. Previous works [22–
24] used statistical methods to mix spatial information from the high-spatial
low-spectral resolution image with the color information from the multi-spectral
bands. However, it is expensive and time-consuming to generate a large set of
registered spectral and color images. To cope with the limited training data,
a model can be trained on a large but related dataset, and then adapted to
perform on the smaller given dataset. Prior work on domain adaptation [3, 6, 8]
show the merit of these techniques to handle small or difficult-to-label datasets.
Similarly, we use our original framework for super-resolving the multi-spectral
images, and then use a small residual network to refine the result through a color
image guide, which requires significantly less training examples compared to the
whole model.
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3 PIRM2018 Challenge

We use a dataset from PIRM2018 Spectral Image Challenge [20, 19]. The dataset
consists of two tracks: Track1 contains 240 spectral images and Track2 con-
tains 130 different image stereo pairs of spectral images and their corresponding
aligned color images. The datasets are split according to Table 1, the test ground-
truth is not available for download, so we report and compare on the validation
dataset.

Table 1. PIRM2018 Spectral Image Challenge Dataset.

Track Training Validation Test

1 200 20 20
2 100 10 20

For Track1, each data sample i contains a triplet of 14-channel images Ci
I =

(HRi,LR2i,LR3i), where HRi is the high resolution ground-truth image, and
LR2i and LR3i are the low resolution images obtained by 2 and 3 times down-
scaling, respectively. The downscaling technique used in this dataset is nearest-
neighbors downscaling, i.e., the pixels in the low resolution images are taken at
alternating indices from the original image. Even though the 3 times downscaled
signal contains less information, it still can cover part of the missing information
from the 2 times downscaled signal. This implies that we can make use of a
combination of multi-scale downscaled images to obtain a better representation
of the high resolution version.

(a) GB vs Channel-1 (b) RG vs Channel-14

Fig. 2. Statistical analysis on different input modalities.

Track2 provides the same information as Track1 with an additional color
guiding image Gi of the same size as the high-resolution spectral image, giving
us data samples of the form Ci

II = (HRi,LR2i,LR3i,Gi). The same downscaling
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Fig. 3. Illustration of our proposed stacked residual learning framework for spectral
image super-resolution. It contains three steps: preprocessing, Stage-I, and Stage-II.
Image completion is done in preprocessing to generate a HR candidate. Then Stage-I
reconstruct the HR using a 12-layer residual learning network. Stage-II refines Stage-I
results using guiding color image G through a 9-layer residual learning network.

technique is used here. The color image is a 3-channel image already registered
to its spectral counterpart with the same resolution as the target high resolution
image. The registration is done using FlowNet [5]. Fig. 2 show the distributions
of pixel values from the first and last channel of the spectral image with respect
to the color channels from the guide. The first demonstrates the correlation
between channel-1 (close to blue) with respect to the green and blue channels
from the color guide, and the second shows the correlation between channel-14
(close to orange) and the red and green channels. The correlation of these values
indicate that the color channels can help predict the spectral pixel values. Both
plots have multiple color pixels with zero value, this is due to the image warping
done by the registration algorithm.

4 Method

We propose a residual learning framework for multi-modal spectral image super-
resolution as shown in Fig. 3.

Similar to bicubic interpolation adopted in many super-resolution algorithms [13,
4], we first upscale the low-resolution spectral inputs LR2 and LR3, which are
subsampled from the full resolution spectral image by a factor of 2 and 3. We
use an image completion algorithm [1] on the multi-scale inputs to generate a
high-resolution spectral image candidate with the desired size. Then we train
residual learning networks for spectral image super-resolution.

For Track1, Stage-I uses one 12-layer residual learning network to reconstruct
high-resolution results from the image candidate. These reconstructions are used
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Downscaled x2

Downscaled x3

High Resolution Reconstruction

Fig. 4. Illustration of downscaling and upscaling.

to generate the solution for Track1. In Track2, we have less training data. So we
design our solution to take advantage of Stage-I. Stage-II takes the concatenation
of Stage-I’s proposed output and the higher-resolution color image as inputs. It
is trained on the small dataset of image pairs and refines Stage-I results through
guiding color images.

4.1 Image Completion

LR2 and LR3 are both obtained by downscaling the original HR version using
nearest-neighbor downscaling. Therefore, a large amount of pixel information is
preserved, which means we can already recover part of the ground-truth imme-
diately from the low-resolution samples. In fact, we can recover 1

4
of the data

from LR2 and 1

9
from LR3 by simply upscaling the image and setting the new

pixels to black (unfilled). Together, LR2 and LR3 give us 1

3
of the original image

pixels. Figure. 4 shows how we recover the partial high-resolution image, named
HRp, from both low-resolution examples.

Image completion is the task of completing an image with a percentage of
pixels missing. This has a wide range of applications such as noise-removal, demo-
saicing, inpainting, artifact removal as well as image editing. One particular us-
age is image-scaling and super-resolution. There have been multiple approaches
to fill the missing parts of an image.

One main category of methods relies on matrix completion [10, 15, 17]. While
these methods are well suited for large number of retained pixels, they do not
work when the input matrix has fully missing columns and rows such as ours.
We also do not have many connected pixels to form patches, so patch-based
methods are not suited [14, 21].

The extreme image completion [1] method FAN is able to complete a 1% pixel
image with low computation time, and returning visually interpretable images.
FAN relies on an efficient implementation of a modified truncated Gaussian
filter. The sparse image is filtered with a Gaussian to interpolate missing entries
with Gaussian weights assigned to available pixels in a window surrounding the
missing entry, on which the Gaussian filter is centered. The modification is that
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(a) Low-Resolution LR2 (c) Upscaled LR2 (e) Fusion HRp

(b) Low-Resolution LR3 (d) Upscaled LR3 (f) FAN HRc

Fig. 5. Illustration of Image Completion on channel 1 of one example from the valida-
tion set: (a-b) are the low-resolution images, (c-d) their upscaled version, (e) the fusion
of both upscaled versions and (f) the image completion result. Images (c-e) have been
gamma corrected for visual clarity.

the Gaussian weights are adjusted to account for the number of locally available
pixels.

We use FAN to obtain our input HRc. Note, that we keep the ground truth
pixels in HRc even though FAN outputs different values for them. Fig. 5 shows
the steps to obtain the completed image from both inputs.

4.2 Stage-I: Residual Learning

The input of our Stage-I network HRc is a low-frequency estimation with par-
tially correct high-frequencies HRh. Thus we can formulate it as HRc = HR −
HRh, where HRh contains information of the high-resolution spectral image,
such as textures and edges. We adopt a residual learning formulation to train
a residual mapping f(HRc) = HRh. The architecture of the residual learning
network is shown in the Stage-I part of Figure. 3. By adopting residual learning,
the network only learns to predict the high-frequency details without preserving
all low-frequency details. This allows us to use a smaller model and train faster
than conventional CNN methods. In our residual learning network (Stage-I) for
spectral image super-resolution, we use 12 convolutional layers of the same set-
ting except for the last layer: 64 filters of size 3 × 3 and followed by a ReLU
activation. The last layer for generating residual images, consists of 14 filters of
size 3× 3.

As shown in [26], the loss function in an image restoration task is very im-
portant when the resulting image is going to be shown to a human observer.
Typical losses include the L1 and L2 distance measures. However, these meth-
ods are not well suited to deal with multi-spectral data. The spectral information
divergence [2] (SID) compares the similarity of two pixels by measuring the dis-
crepancy between their spectral signatures. This measure has been widely used
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in hyper-spectral data processing. By defining the relative entropy of the pre-
diction P with respect to the ground-truth G containing N pixels as:

D(P ||G) =
N
∑

i=0

Pi log(
Pi

Gi

) (1)

The SID can then be defined as the symmetric sum of both relative entropy
measures:

SID = D(P ||G) +D(G||P ) (2)

Additionally, the pixel values are in the range [0, 65536), so a relative error
measure is well suited to reduce the large error that an absolute measure could
have at the higher end of the range. The mean relative absolute error (MRAE)
does exactly that by punishing errors relative to the value of the ground-truth.
The MRAE is calculated as:

MRAE =

∣

∣

∣

∣

P −G

G

∣

∣

∣

∣

(3)

To better optimize along both metrics, we use a loss function of a sum of
MRAE and SID to train our network:

Loss = SID +MRAE (4)

4.3 Stage-II: Color Guided Super-Resolution

We propose a further improvement by using registered pairs of spectral and color
images. In fact, mixing information from both modalities allows obtaining both
high spatial and spectral resolution images. However, due to the difficulty of
obtaining a large set of registered image pairs, we introduced a transfer learning
method built on top of the previous residual network. We build a new residual
learning network that takes as input the previous super-resolved image (obtained
from Stage-I) concatenated with a 3-channel color image. The new network acts
as a fine-tuner for the super-resolution based on the new color data accompanying
its input. The network architecture is shown in Stage-II part of Fig. 3. Here we
use 8 convolutional layers with 64 filters of size 3 × 3 each followed by a ReLU
activation, and we use a final convolutional layer with 14 filters of size 3× 3 to
produce the residual image. We use the same loss function to train this network
as discussed above.

5 Experiments

5.1 Comparative Results

We train the two stages separately. For Stage-I, we use spectral patches of size
96×96 with a stride of 24 cropped from the fused LR2 and LR3 images following
the described image completion scheme. We use spectral images from both tracks
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to obtain a larger training set for Stage-I. We use Adam for optimizing the
network with weight decay = 1e − 5 and a learning rate of 0.001. We decay
the learning rate by 10 every 30 epochs. We set the minibatch size to 64. After
Stage-I converges, we use the Track2 dataset for training Stage-II. We crop
48 × 48 overlapping patches with a stride of 16 from the dataset. We use the
same training strategy as Stage-I for Stage-II. We use a sum of SID and MRAE
for the loss function for the training of both stages.

Evaluation with MRAE, SID and PSNR metrics is conducted on two vali-
dation sets: Validation-I includes 20 spectral images and Validation-II includes
10 pairs of spectral images and corresponding guided color images. Note that
as Validation-I does not have a guiding color image as input, only results from
Stage-I are shown.

Table 2. Test results on Validation-I. The bold values indicate the best performance.

Metric Bicubic Stage-I Results EDSR

MRAE 0.11 0.08 0.10
SID 57.39 43.48 43.57

PSNR 36.07 37.44 37.27

Table 3. Test results on Validation-II. The bold values indicate the best performance.

Metric Bicubic Stage-I Results Stage-II Results Residual Net EDSR

MRAE 0.13 0.10 0.09 0.23 0.16
SID 43.32 38.04 24.51 36.29 30.67

PSNR 36.48 37.02 39.17 36.62 37.13

Table 2 shows the results on Validation-I, we compare our image completion
method by training the same architecture on inputs from bicubic upscaled images
taken from LR2. Our image completion input outperforms this commonly used
upscaling method on all metrics. This also applies to the Validation-II dataset.

We show an example of results from different stages of our pipeline on
Validation-II in Fig. 6. The error images in Fig. 6 clearly show that with the
help of guiding color image, Stage-II is able to improve the results from Stage-I.

We display the comparison with other methods on Validation-II are dis-
played in Table 3. To show the merit of our transfer learning model, we train a
residual learning network [13] and the state-of-the-art super-resolution network
EDSR [16] using both spectral images (after applying image completion on LR2
and LR3) and guiding color images as inputs. For the residual network, we use
21 convolutional layers to obtain the equivalent size of our stacked stages. We set
all convolutional layers of the residual network with a configuration of 64 filters
of size 3 × 3 and ReLU activation except the last layer which has 14 filters of
size 3× 3 with no activation function. For EDSR, we use the same configuration
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Fig. 6. Example of results from different stages. Error images show the absolute dif-
ference from our reconstruction to the ground truth spectral image. The histograms of
residuals show the histogram of related absolute errors on the error images.
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Fig. 7. Visual comparsion of results from different methods: EDSR and our method
trained on bicubic interpolated inputs and the completed HR candidates. Error images
show the absolute difference from our reconstruction to the ground truth spectral
image.

as the original paper except we ignore the Pixel Shuffle (since we already use
an upscaled input) layer [18] and modify the last layers to have 14 filters to
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reconstruct the 14-band spectral image. EDSR has 32 residual blocks with 256
filters for each convolutional layers. We train both networks using only Stage-II
dataset, and we also do image completion before feeding LR2 and LR3 inputs to
the networks. All networks are trained for 300 epochs. Although trained without
guiding color images, our Stage-I gives slightly better results than the residual
network and EDSR trained on pairs. With guiding color images, Stage-II gains
significant improvements on all three metrics.

We also show in Fig 7 the visual comparison of EDSR [16] and our method
trained on bicubic interpolated input and the completed HR candidates. The
error images show that our method outperforms the other two methods.

In addition to performance, we also evaluate the memory and time consump-
tion of the proposed model. For a 240 × 480 spectral image (with LR2 size of
120 × 240), our method only takes 0.5 seconds (0.3 seconds on Stage-I and 0.2
seconds on Stage-II) and 800MB memory on Titan X GPU. While for EDSR, it
takes 1.1 seconds and 8000MB memory on the same device.

5.2 Ablation Studies

We run ablation studies on our Stage-I network to study how different factors
affect the architecture’s performance. First, we study the effect of using different
upscaling factors together and alone. Second, we study the effect of the depth
on the network on its ability to generalize. Finally, we experiment with changing
the loss metrics between MRAE, SID and their sum.

In all the experiments, we train the same residual network with the previously
stated configurations, while varying only the one factor in question. We use Adam
for optimizing the network with weight decay = 1e − 5 and a learning rate of
0.001. We decay the learning rate by 10 every 20 epochs, and we train all the
networks for 100 epochs. We report our results on the Track1 validation set.

Upscaling Factors In this section, we change the input of the network to
understand how different scales affect its performance. We separate the LR2
and LR3 images, and create image completions from each one of these and train
two networks separately using those inputs. Both networks are using the sum of
MRAE and SID as loss function. We compare both of them against the original
network trained on the completed LR2 and LR3 images together. Table 4 shows
the performance of each network given different inputs. All networks achieve
the best performance on the type of input they were trained on, we use those
values to compare across models. The completed LR2 includes more original
pixels than the completed LR3, the network trained on LR2 outperforms the
network trained on LR3. Naturally, the network trained on image completion
on both LR2 and LR3 obtains better results than the network trained on LR2
only. This also demonstrates that although LR3 has a lower resolution than
LR2, it contains extra original pixels that help to reconstruct a higher-quality
high-resolution spectral image.
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Table 4. Test results on Validation-I. The rows represent the type of input the net-
works were trained on, the columns show the results on inputs taken with different
downscaling factors. The bold values indicate the best performance.

LR2 LR3 LR2 + LR3

MRAE SID MRAE SID MRAE SID
LR2 0.12 55.50 0.25 192.0 0.12 62.97
LR3 0.16 106.24 0.18 117.17 0.14 123.63

LR2+LR3 0.13 58.10 0.24 178.04 0.10 47.20

Depth Effect We study the effect of the depth on the network accuracy and
generalization. We empirically determine the best depth for the residual network
architecture on the Stage-I problem. We vary the depth between 8 and 16 by
steps of 2 and report the progress of this networks during training, as well as
their best performances on the validation set. Table 5 shows the metrics for
these 5 networks. We can see that at depth 12, we obtain the best performance
in terms of MRAE and PSNR.

Table 5. Test results on Validation-I based on network depth. Numbers in the header
row indicate the number of convolutional layers.

Metric 8 10 12 14 16

MRAE 0.11 0.11 0.10 0.11 0.12
SID 47.27 46.94 47.20 47.26 50.44

PSNR 35.07 35.13 35.15 35.05 31.21

Table 6. Test results on Validation-I based on loss metric. Metrics in the header row
indicate the loss used during the training of the network. All networks have a similar
structure.

Metric MRAE SID MRAE+SID

MRAE 0.09 0.11 0.10
SID 87.75 47.20 47.20

PSNR 31.14 34.94 35.15

Loss Metrics In this section, we train multiple residual networks with the same
parameters using different loss functions. We train with only MRAE, only SID,
and a combination of both. We show that using both provides better super-
resolved spectral images than using a single metric. Table 6 shows the results
from these three models. While the network trained on MRAE only outperforms
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the others on the MRAE metric, its results have a high SID loss. Combining
both MRAE and SID losses during training gives the best of both metric results
while also scoring high on PSNR.

6 Conclusion

Our work presents a spectral super-resolution technique based on the fusion of
information from multiple sources. First, we introduce an upscaling scheme to
combine multi-scale downscaled images based on image completion, and demon-
strate it performs better than the commonly used bicubic method. We feed our
upscaled images into a two-stage residual network pipeline. In the first stage,
we infer original hig-resolution images from the upscaled input. In the second
stage, we further fine-tune the prediction by appending color guided images and
input it into a smaller residual network. Both networks are economical in time
and memory consumption while achieving competitive results.

In conclusion, we demonstrated different schemes combining multi-modal in-
puts for spectral super-resolution. While this work limited itself to the data
provided by the challenge, it can be expanded into other modalities, namely
different scales, near-infrared, or even depth inputs.
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