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Abstract. Image processing methods using deep convolutional networks
have achieved great successes on quantitative and qualitative assessments
in many tasks, such as super–resolution, style transfer and and enhance-
ment. Most of these solutions use many layers, many filters and complex
architectures. It is difficult to implement them on mobile devices, e.g.
smart phones, because of the limited resources. Many applications need
to deploy these methods on mobile devices. But it is difficult because
of limited resources. In this paper we present a lightweight end–to–end
deep learning approach for image enhancement. To improve the perfor-
mance, we present mux layer and demux layers, which could perform
up–sampling and down–sampling by shuffling the pixels without losing
any information of feature maps. For further higher performance, dense-
blocks are used in the models. To ensure the consistency of the output
and input, we use weighted L1 loss to increase PSNR. To improve image
quality, we use adversarial loss, contextual loss and perceptual loss as
parts of the objective functions during training. And NIQE is used for
validation to get the best parameters for perceptual quality. Experiments
show that, compared to the state–of–the–art, our method could improve
both the quantitative and qualitative assessments, as well as the perfor-
mance. With this system, we get the third place in PIRM Enhancement–
On–Smartphones Challenge 2018(PIRM–EoS Challenge 2018).

Keywords: Mux layer · Demux layer · Image enhancement · Deep learn-
ing

1 Introduction

In recent years, embedded cameras in mobile devices have been improved rapidly,
which has brought mobile photographs to a substantially new level. However,
because of some limits, such as small size, compact lenses and the lack of specific
hardware, the quality of mobile photographs is still falling behind DSLR cameras.

Because of high–aperture optics and larger sensors, DSLR cameras could
capture photographs with higher quality, color rendition and less noise. These
physical differences between DSLR cameras and mobile devices lead to a great
gap, making DSLR cameras quality unattainable for compact mobile devices.
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There have been many methods that could enhance the mobile photographs,
but most of them could only adjust global parameters, such brightness or con-
trast. They are usually based on some pre-defined rules to adjust these param-
eters. However, image quality is very related to textures and image semantics,
which are difficult for classic method to improve.

Mobile devices face two big difficulties to take photographs with similar qual-
ity of DSLR cameras. One is to find algorithms that could improve photographs
with not only global parameters, but also semantic and perceptual qualities.
The second problem is to implement these algorithms on mobile devices, which
means that these methods should be lightweight.

First, image processing methods based on deep convolutional networks usu-
ally could achieve these targets to improve the quality of images. Several solu-
tions for different sub–tasks have solved the first problem about image quality.
These methods solve image–to–image translation, targeting at translating im-
ages from one domain to another. To ensure the high perceptual quality of out-
puts, many of them use some particular metrics to measure image quality and
put them as part of the objective functions. The sub–tasks include image super
resolution, image deblurring, image dehazing and denoising. However, methods
based deep learning usually cost large number of resources, such as CPU, GPU
and memory, which makes it difficult to implement on mobile devices.

Second, to solve the implementation problem, recent deep learning architec-
tures have been used. This includes: MobileNet[15], ShuffleNet[16], MeNet[31]
and DPED[3]. All these architectures target devices with limited resources.

The remainder of this paper is structured as follows. In Section 2 we introduce
some related works to our research. Section 3 explains the main contributions of
this paper. Section 4 presents our method in detail, include the architecture and
loss functions. Section 5 shows experiment results and analysis. Finally, Section
6 concludes this paper.

2 Related Work

Image super resolution aims at restoring an original image form its downscale
version. In [2], they used a CNN and MSE loss to learn how to map low resolu-
tion images to high resolution. This is the first deep learning solutions for single
image super resolution. Later work proposed deeper and more complex architec-
tures, such as[4], [5], [6]. Recently, photo–realistic results with high perceptual
quality have been possible to achieve by using a pre–trained VGG network for
loss function[1] and adversarial networks[7]. They are known to be efficient at
recovering plausible high–frequency components, that look more realistic at the
cost of losing distortion values [29].

Image deblurring and dehazing aim at removing artificially added haze
or blur from the images. Usually, MSE loss is used as a loss function and the
proposed CNN architectures consist of three to fifteen convolutional layers[8]
[9][10], or are bi–channel CNNs[11].
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Image denoising similarly targets removal of noise and artifacts from the
images. In[12] the authors presented weighted MSE together with a three–layer
CNN, while in[13] it was shown that an eight–layer residual CNN performs better
when using a standard MSE.

Image enhancement DPED network[3] presented a novel approach for the
photo enhancement task based on learning a mapping between photos from
mobile devices and DSLR camera. The model is trained in an end–to–end fashion
without any additional supervision or manually adjusted features. Authors of
DPED used a multi–term loss function composed of color, texture and content
terms, allowing an efficient image quality estimation.

Improving performance of deep learning models is always an impor-
tant direction in the field of deep learning. Many compact networks are de-
signed for mobile or embedded applications. SqueezeNet[14] proposed fire mod-
ules, where 1× 1 convolutional layer is first applied to squeeze the width of the
network, followed by a layer mixing 3 × 3 and 1 × 1 convolutional kernels to
reduce parameter. MobileNet[15] exploited depthwise separable convolutions as
its building unit, which decompose a standard convolution into a combination of
a depthwise convolution and a pointwise convolution. ShuffleNet[16] used depth-
wise convolutions and pointwise group convolutions into the bottleneck unit[17],
and proposed the channel shuffle operation to enable inter–group information
exchange. These networks do not use model compression techniques and so they
can be trained without using large models and the training procedure is very
fast.

Improving image quality Contextual loss[19] was proposed to measure
the similarity between the feature distributions of two images. Contextual loss
identifies similar patches between two images, making it better as a perceptual
quality target. Another metric to measure perceptual image quality is the Nat-
ural Image Quality Evaluator(NIQE) [21]. NIQE is a completely blind image
quality index based on a collection of statistical features that are known to fol-
low a multivariate Gaussian for natural images. It can thus quantify how natural
or real image looks without any reference image, providing a perceptual quality
index similar to a human evaluations such as MOS.

3 Contributions

To solve the problems mentioned before, there are two research targets. One is
to present a novel model to keep high performance, and the other is to propose
methods to ensure the high quality of processed images.

To achieve these targets, we make the following contributions:
1. Novel layers with shuffling pixels for up–sampling and down–sampling,

which we call Mux and Demux layers, respectively. Mux layers divide input
features into groups, with each group consisting on four input features. By rear-
ranging pixels of every group of four features, the output of the Mux layer doubles
the width and height. Thus, it can be used as up–sampling layer in CNN. Demux
layer converts input features into 4 times the number of features with half the
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width and half the height. So Demux layer can be used as down–sampling layer.
Because of the shuffling pixels, the outputs keep all the informations from the
inputs, as opposed to to standard pooling and unpooling layers.

2. For high performance, we present new CNN architectures. In the new
models, Mux layer, Demux layer and DenseNet[18] were combined together.
Because no information is lost, input images could be down–sampled directly
instead of pre–processed with convolutional layers. Feature maps processed by
convolutional layers are always in low resolution, thus leading to high efficiency.
Besides, DenseNet is also designed for performance, which used densely skip
connections to reduce the parameters of each convolutional layer.

3. Our loss function adds a weighted L1 cost and a contextual loss to the total
loss function used in DPED method, which can improve the perceptual quality
of output images. For validation, we use the NIQE index to find the model with
the best perceptual quality.

4 Method

Image enhancement is a sub–task of image–to–image translation, which would
translate low quality images to images with high quality. So our target is to
learn a mapping from domain X to domain Y , given training dataset {xi}

N
i=1

where xi ∈ X and {yi}
M
i=1 where yi ∈ Y . We denote the data distribution

as x ∼ pdata(x) and y ∼ pdata(y). In order to get high frequency details, we
add noise to the input images. So our model is target to learn the mapping
from the observed images x and noises z to y: G : {x, z} → y. In addition, we
introduce the discriminator D that is trained to distinguish between images {y}
and produced images {G(x)}. Finally, the generator G is trained to produce
outputs that cannot be distinguished from “real” images by D. This diagram of
the system is shown in Figure 5.

To train the model, we use a multi–term loss function which composed of
adversarial loss, weighted loss, perceptual loss, contextual loss, color loss and
total variation loss.

4.1 Network Architecture

Motivation. Our network architecture is motivated by the well–known design
of multi–rate system in digital signal processing [22][23][24]. In multi–rate sys-
tems one is interested to analyze an image at different low resolutions without
losing information. For one dimensional signals we can take odd and even samples
(demuxing) into different filters. If the filters satisfy the so–called Vetterli and
Vaidyanathan conditions [23] then the original signal can be recovered. Perfect
reconstructions is achieved with a system that filters in low resolution and re-
combine them into a high–resolution image (muxing). This principle also applies
when we replace filters by convolutional networks since these can be interpreted
as generalized adaptive filters [25]. In prior work we have applied this idea to de-
sign image super–resolution systems[26] [27][28] using a so–called MuxOut layer.
The later considers only the synthesis stage of multi–rate systems.
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Here, we move one step forward to include both the analysis and synthesis
stages of multi–rate systems. For image enhancement we need the ”perfect re-
construction” property of multi–rate systems to guarantee that we can recover
the original content. We know that for linear convolutions perfect reconstruction
is possible by the Vetterli and Vaidyanathan conditions. When using convolu-
tional networks the filters are obtained during the training process, with a loss
function that can impose the perfect reconstruction target. Our design based on
multi–rate principles guarantee that at least one local minima exists to recover
the original content. In image enhancement “perfect reconstruction” is not our
final target since we want to modify the input image, but it guarantees that
the architecture would be able to keep all the information needed to solve the
problem when processing at lower resolutions.

Fig. 1. Demux layer and Mux layer.

Mux Layer. [6] proposed an efficient sub–pixel layer called pixel shuffling,
which is also based on the theory of multi–rate filters. The pixel shuffling layer
is used for up–sampling in the end of convolutional networks to produce three
channels of R, G, and B.

Mux layer is very similar to the pixel shuffling layer, but it can also process
feature maps and produce a varied number of feature maps. So it can be used in
the middle of convolutional networks. Another property of Mux layer is that it
could be used together with Demux layer for perfect reconstruction. As shown
in Figure 1, it is the architecture of Mux layer. Mux layer could be used as up–
sampling layers in convolutional neural networks, which is based on the theory
of multi–filter. Mux would divide input feature maps into small groups, with
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each group consisting of four feature maps. By arranging pixels of every four
feature maps according to the aforementioned rules, output feature maps would
be 2 times higher and 2 time wider than the inputs. And the number of feature
maps is one fourth of the number of inputs.

The architecture of Demux layer is shown in Figure 1. Demux layer could
be used as a down–sampling layer in convolutional neural networks which is the
inverse operation of Mux layer. So Demux layer would convert input feature
maps into 4 times the number of feature maps, and the size of outputs is half
the height and half the width of the inputs. It is known that, standard down–
sampling layers are irreversible, e.g. max pooling, average pooling and strided
convolutional layers, that drop or change the value of pixels. So, convolution
operations always precede these layers to process high–resolution features with
full information. From Figure 1 it could be seen that Demux would not change
the value of any pixel, just shuffling the position of them according to some rules.
So Demux performs down–sampling without losing any information in the input.
Input images could be downscaled directly and be processed in lower resolution.
This is one of the keys to improve the performance of deep learning models.
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Fig. 2. Normal configuration of generator.

C

C

High 

resolution

Middle 

resolution

Low 

resolution

Fig. 3. High–performance configuration of generator.

Generator. With the configuration of Figure 2, the generator would process
images in three scales. Input RGB images would be down–sampled by Demux
layer, and then processed by a denseblock, which is based on densenet[18]. Then
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another Demux and denseblock are used to down–sample the features and pro-
cess them. After processing in the third scale, Mux layer is used for up–sampling
followed by another denseblock. At the end of this model, feature maps are pro-
cessed by another Mux layer to get the output RGB image. To generate high
frequency details and get high perceptual quality, noise channels are added to
feature maps after every Demux layers. And we use instance normalization layers
after every 3× 3 convolutional layers to adjust global parameters of the images
and feature maps.

Another configuration of generator is shown in Figure 3. In this configura-
tion, input image is processed by Demux layer two times at the very beginning.
So the feature maps would go directly to the third scale. Most of the convolu-
tional operations would process feature maps in very small size, thus to reduce
computation complexity and improve performance.
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Fig. 4. Model of discriminator.

Discriminator. Figure 4 shows the architecture of the discriminator, which is
the same as in DPED[3] system. The discriminator consists of five convolutional
layers, each followed by a LeakyReLU activation function and batch normal-
ization. The first, second and fifth convolutional layers are strided with a step
size of 4, 2, and 2, respectively. A sigmoid activation function is applied to the
output of the last fully connected layer containing 1024 neurons to output the
probability that the input image belongs to the target domain.

4.2 Loss Function

Adversarial Loss. For image enhancement, important differences between in-
put images and target images are the brightness, contrast, and texture qualities.
We build a generative adversarial network to learn the mapping between input
and target domains. The discriminator observes both generated images (fake)
and target images (real), and its goal is to predict whether the input image is real
or not. It is trained to minimize a cross–entropy loss function. The adversarial
loss for generator is defined as a standard GAN[30]:

Ladv = −
∑

i

logD(G(x, z), y) (1)

where G and D denote the generator and discriminator networks, respectively.
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Weighted L1 Loss. In order to get close to the DSLR image we applied a
weighted L1 loss during training. We calculate the L1 loss of each channel (R,
G, and B) between outputs and reference DSLR images, and then combine them
together with different weights, which are taken from the YUV color conversion.
The formula for weighted L1 loss is:

Ll1 = 0.299×‖r(G(x))−r(y)‖1+0.587×‖g(G(x))−g(y)‖1+0.114×‖b(G(x))−b(y)‖1 ,

(2)
where r(), g() and b() are the operations to get the R, G, and B channels from
one image, respectively.

Perceptual Loss. Inspired by [1], [7] and [3], we also define our perceptual loss
based on the feature maps extracted by the pre–trained VGG network to measure
high–level perceptual and semantic differences between images. Let φj(x) be the
outputs of the j–th layer of the pre–trained VGG network φ when processing
image x. If j–th is a convolutional layer, φj(x) would be a feature map of shape
Cj×Hj×Wj . Then the perceptual loss of the generator is the Euclidean distance
between feature representations:

Lperc =
1

CjHjWj

[||φj(y)− φj(G(x, z))||2] . (3)

As demonstrated in [1], images reconstructed from the high–layers features tend
to preserve the content and overall spatial structure, and not the color, texture,
and exact shapes. Using perceptual loss for our image transformation network
encourages the output images to be perceptually similar to the input images,
but does not force them to match exactly.

Contextual Loss. Authors of [19] proposed a novel contextual loss that could
be effective for many image transformation tasks. The contextual loss is defined
as below:

CX(x, y) =
1

N

∑

j

max
i

CXij , (4)

where CXij is the similarity between features xi and yj , which is defined as:

wij = exp
1−

dij

mink di,k+ǫ

h
(5)

CXij =
wij∑
k wik

(6)

where dij is the Cosine distance between xi and yj , ǫ is a fixed value of 0.00001,
h > 0 is a band–width parameters.

The final contextual loss function is as:

Lctx = − log(CX(φj(G(x, z)), φj(y))) (7)
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Fig. 5. Training system of proposed method. The coefficients of different part of the
total loss is shown in Table 1.

Color Loss. To measure the color difference between the enhanced and target
images, authors of [3] proposed applying a Gaussian blur and computing Eu-
clidean distance between the obtained representations. The formula of color loss
can be written as:

Lcolor = ‖GB(G(x))−GB(y)‖22 (8)

where GB() is the function of Gaussian blur.

Total Variation Loss. In addition to previous losses, we also add a total
variation loss[20] to enforce spatial smoothness of the produced images. The
formula of total variation loss is as:

Ltv =
1

CHW
‖∇xG(x, z) +∇yG(x, z)‖ (9)

where C, H and W are the dimensions of the generated image G(x, z).

Total Loss. The full loss function of our generator is defined as weighted sum
of previews losses with different coefficients:

Ltotal = Ladv + αLl1 + βLperc + γLctx + θLcolor + λLtv (10)

4.3 Training strategy

The training procedure is shown in Figure 5. We use the same dataset as DPED
method. The coefficients of different parts of the loss function are presented in
Table 1:
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Table 1. Coefficients of parts of total loss in Formula10 during the experiments.

Parameter α β γ θ λ

Value 5000 10 10 0.5 2000

During the training, we perform validation to avoid over–fitting. For distor-
tion quality, we use PSNR and SSIM between the enhanced images and DSLR
images to evaluate the model.

Besides the distortion quality and loss function, we also use NIQE as one of
the metrics to evaluate the models. For the PIRM-EoS the evaluation considers
different aspects. The evaluation formula measures a distortion index (PSNR),
perceptual quality (MS-SSIM during validation and MOS for final evaluation),
and running time on different devices. From this, MOS score is the most unpre-
dictable during training and validation because we cannot reproduce the opinion
of people. To approximate the MOS scores we use a linear mapping of the NIQE
index that is know to be linearly correlated to MOS values. Thus, we could
estimate the scores that would be calculated in the test phase of the challenge.

5 Experiments

We use the generator in Figure 2 and Figure 3 for image enhancement. Using the
same test datasets as DPED[3], we compare our method against several solutions
that are very relevant to the task. To evaluate the performance, we calculate the
running–time of each method while processing images of size 1280× 720.

5.1 Baselines

Apple Photo Enhancer(APE) is a commercial product known to generate
one of the best visual results, while the algorithm is unpublished. The method is
triggered using automatic Enhance function from the Photos APP. It performs
image improvement without taking any parameters.

SRCNN[2] is a fundamental baseline super–resolution method, thus addressing
a task related to end–to–end image–to–image translation. Hence we chose it as
a baseline to compare to. The method relies on a standard three–layer CNN
and MSE loss function and maps from low resolution / corrupted images to the
restored image.

Johnson et al.[1] could get high quality outputs in photo–realistic super res-
olution and style transferring tasks. The method is based on a deep residual
network that is trained to minimize a VGG–based loss function.

DPED.[3] is one of the state of the art in image enhancement. A similar loss
function to our method is used for the training to minimize the adversarial loss,
perceptual loss, color loss and total variation loss.
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ResNet.[17] is an important baseline in the field of classification and image
processing. Denseblocks are widely used in deep convolutional networks. In the
experiments, we use two configurations of ResNet, ResNet–8–32 and ResNet–
12–64.

5.2 Evaluations

Table 2. PSNR and SSIM compared with different methods on DPED test images

Method PSNR SSIM

APE 17.28 0.8631
SRCNN[2]. 19.27 0.8992

Johnson et al[1]. 20.32 0.9161
resnet–12–64[17] 22.43 0.9203
resnet–8–32[17] 22.57 0.9163

DPED[3] 20.08 0.9201
ours normal 22.98 0.9235

ours high–performance 22.73 0.9206

Distortion evaluation. We compared the PSNR and SSIM of enhanced images
with APE, SRCNN, Johnson et al., ResNet, DPED and our method on the task
of mapping photographs from iphone 3GS to DSLR(Canon) images, which is
part of the DPED test dataset. The results are shown in Table 2. From these
results, we see that our method is the best in terms of both PSNR and SSIM in
this experiment.

Table 3. NIQE scores compared with different methods, lower NIQE value means
better perceptual quality.

Method SRCNN ResNet–12–64 ResNet8–32 DPED
ours

normal
ours

high–performance

NIQE value 6.55 9.37 7.61 6.82 6.00 5.90

Perceptual evaluation. We calculate the NIQE scores of enhanced images
of different methods. The results are shown in Table 3. Results show that our
method could get the lowest NIQE values, which means that the images produced
by our method have better perceptual quality. We believe that the key factor for
this improvement is the contextual loss used in training and NIQE value used
in validation.

The produced images of different methods could be seen in Figure 6. From
the output images, it could be seen that the results of our method and DPED
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Fig. 6. Results comparison of different methods: (a)original iPhone photo,(b)APE,
(c)Dong et al[2]. (d)Johnson et al[1].(e)DPED[3], (f)resnet–8–32, (g)our model in nor-
mal configuration, (h)our model in high–performance configuration, (i)DSLR image.

are closer to the DSLR image than other methods. We observe, for example, that
DPED increases the brightness excessively in this experiment. The brightness is
visibly stronger than DSLR image. Our method could balance the contrast and
artificial details better than other methods.

Performance evaluation. We run this experiment to measure the processing
time of our method and other methods with input image resolution 1280× 720.
Table 4 shows that our method shows a significant advantage in processing
speed. It is the Mux and Demux layers that bring this advantage, because the
convolutional operations do now need to process feature maps in large size.

Ablation study. We did the ablation study of the normal configuration genera-
tor by removing every part of loss function to find the effect of each loss. Results
are shown in Table 5. We can get the highest PSNR and SSIM with full losses.
When contextual loss was removed the NIQE increased obviously, which means
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Table 4. Running–time performance of different methods.

Method SRCNN ResNet–12–64 ResNet8–32 DPED
ours

normal
ours

high–performance

running time(ms) 2044 12539 3928 16072 1148 806

the contextual loss help to improve the perceptual quality of outputs. The lowest
PSNR was got without L1 loss, which means that the L1 loss was effective to
improve distortion. When remove adversarial loss, L1 loss or perceptual loss, the
NIQE was better than system with full losses, but with worse distortion. For
the PIRM challenge, our system could get balance of perceptual and distortion.
More visual results about ablation study are in Figure 7

Table 5. Ablation study of losses and noise

Condition PSNR SSIM NIQE

no contextual loss 22.44 0.9114 6.43
no adversarial loss 22.64 0.9173 5.64

no L1 loss 21.79 0.9121 5.08
no color loss 22.17 0.9166 6.07

no perceptual loss 22.72 0.9158 5.32
no total variation loss 22.53 0.9171 6.13

full losses and noise 22.98 0.9235 6.00

no noise 22.84 0.9207 6.87

We also do another by removing noise with full losses to prove the effect of
noise. Result was in the bottom of Table 5. It can be seen that without noise,
PSNR and SSIM became a little worse but NIQE got worse a lot, which indicated
that noise could help to improve the perceptual quality obviously. Visual results
about removing noise are in Figure 7

5.3 Results of the challenge

We took part in track B of the PIRM–EoS Challenge 2018 with the normal con-
figuration of generator as shown in Figure 2. The official results of this challenge
is shown in Figure 8. We achieved the third place according to MOS scores. And
the 4th, 4th and 5th places according to scoreA, scoreB and scoreC, respectively.
We believe that the high ranking in perceptual quality is due to the use of con-
textual loss and NIQE index during training and validation stages, which help
us to improve MOS scores.

5.4 Limitations

Although our method can perform the enhancement for low quality photos, it
can not be used for any kind of bad images. Several typical failure cases are
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Fig. 7. Results of ablation study: (a)full losses and noise,(b)no L1 loss, (c)no perceptual
loss, (d)no color loss, (e)no adversarial loss, (f)no contextual loss, (g)no total variation
loss, (h)no noise.

Fig. 8. Results of the trackB of PIRM–EoS Challenge 2018. Because of the contextual
loss and NIQE, we are in the third place according to MOS scores, which is better than
most of the players.

shown in Figure 9. On translation tasks whose input are photos with low–light,
our method often succeeds. We have also explored the enhancement with high–
light images, with little success. For example, images with overexposure can
not be translated to high-quality images. One reason is that the network could
not adjust the brightness and contrast depend on the inputs with this training
system. Another reason is the dataset of DPED we used during training only
contains low–light images. Adding more self–adaption and extending training
data are important works in the future.
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