

MACNet: Multi-scale Atrous Convolution Networks for Food Places Classification in Egocentric Photo-streams

Md. Mostafa Kamal Sarker¹[0000-0002-4793-6661], Hatem A. Rashwan¹[0000-0001-5421-1637], Estefania Talavera³[0000-0001-5918-8990], Syeda Furruka Banu²[0000-0002-5624-1941], Petia Radeva³[0000-0003-0047-5172], and Domenec Puig¹[0000-0002-0562-4205]

¹ DEIM, Rovira i Virgili University, 43007 Tarragona, Spain.

{mdmostafakamal.sarker,hatem.abdellatif,domenec.puig}@urv.cat

² ETSEQ, Rovira i Virgili University, 43007 Tarragona, Spain.

syedafurruka.banu@estudiants.urv.cat

³ Department of Mathematics, University of Barcelona, 08007 Barcelona, Spain.

{etalavera,petia.ivanova}@ub.edu

Abstract. First-person (wearable) camera continually captures unscripted interactions of the camera user with objects, people, and scenes reflecting his personal and relational tendencies. One of the preferences of people is their interaction with food events. The regulation of food intake and its duration has a great importance to protect against diseases. Consequently, this work aims to develop a smart model that is able to determine the recurrences of a person on food places during a day. This model is based on a deep end-to-end model for automatic food places recognition by analyzing egocentric photo-streams. In this paper, we apply multi-scale Atrous convolution networks to extract the key features related to food places of the input images. The proposed model is evaluated on an in-house private dataset called “EgoFoodPlaces”. Experimental results shows promising results of food places classification in egocentric photo-streams.

Keywords: Deep learning · Food pattern classification · Egocentric photo-streams · Visual lifelogging

1 Introduction

The interest at lifelogging devices, such as first-person (wearable) cameras, being able to collect daily user information is recently increased. These cameras capable of frequently capturing images that record visual information of our daily life known as “visual lifelogging” in order to create a visual diary with activities of first-person life with unprecedented details [3]. Since, the wearable camera can collect a huge number of images by non-stop image collection capacity (1-4 per minute, 1K-3K per day and 500K-1000K per year). The analysis of these egocentric photo-streams (images) can improve the people lifestyle; by

Fig. 1. Examples of images of food places from an in-house private EgoFoodPlaces dataset. EgoFoodPlaces is captured by 12 different users in different food places using the Narrative Clip camera. EgoFoodPlaces is employed to evaluate the proposed MACNet model for food places recognition.

analyzing social pattern characterization [1] and social interactions [2], as well as generating storytelling of first-person days [3]. In addition, the analysis of these images can greatly affect on human behaviors, habits, and even health [7]. One of the personal tendencies of people is food events that can badly affected on their health. For instance, some people can eat more if they see and sense (e.g. smell) food that constantly feel them hungry immediately [10, 15]. Thus, monitoring and determining the duration of food intakes will help to improve the people food behaviour.

The motivation behind this research is twofold. Firstly, using a wearable camera is to capture images related to food places, where the users are engaged within foods (see Fig. 1). Consequently, these images of visual lifelogging can give a unique opportunity to work on food pattern analysis from the first-person viewpoint. Secondly, the analysis of everyday information (entering, leaving and stay time, see in Fig. 2) of visited food places can enable a novel health care application that can help to analyze the food eating patterns of people and prevent the diseases related to food, like obesity, diabetes and heart diseases.

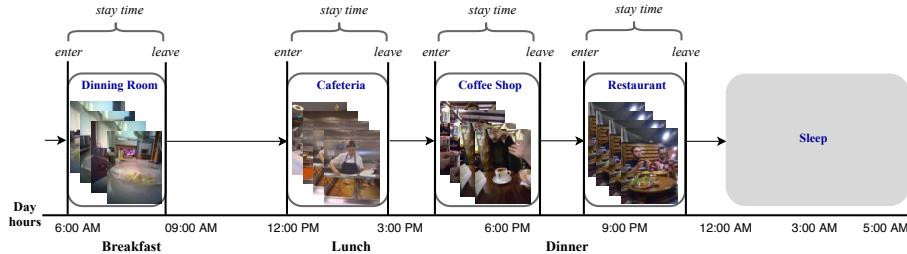


Fig. 2. Examples of commonly spending time in food places everyday.

Early work of places or scene recognition in conventional images was mainly motivated by two large scale places or scene datasets, i.e., Places2 [17] and

SUN397 [16]) with millions of labeled images. The semantic classes of these datasets are defined by their labels by representing the entry-level of an environment. The images of datasets were collected from the internet with a large diversity. However, the two datasets failed to record the real involvement of first-person with food environment and the characterization of the first-person activity. In turn, wearable cameras can able to capture the scenes from a more intimate perspective by its ego-vision system. Thus, we built a new in-house private dataset, so-called “EgoFoodPlaces”, with details involvement information of places that can help to classify the food places or environment to solve the first-person food pattern characterization. With diversity of food places (cafeterias, bars, restaurants, ..etc.) traditional methods of feature extraction (e.g., HOG and SIFT) and classification (e.g., Support Vector Machine (SVM) and Neural Network (NN)) [11] are not sufficient to deal with this complex problem of food places recognition. Thus, this paper aims to use deep learning models (e.g., Convolutional Neural Network (CNN)) that will help us to automatically select and extract key features and also to construct new ones for different food places. One of recent architectures of deep networks used for classification and segmentation tasks is Atrous Convolution Networks proposed in [4]. That networks can encode contextual information by using filters or pooling operations at multiple rates with different sizes of neighbourhoods. Thus, in this paper, we propose to use these networks in our deep model to improve the classification rate with ResNet networks. In addition to detect important structures as well as small details of the input images, we rescale the input images in a multi-scale space (i.e., a pyramid of images with different resolutions). The main contributions of this work is summarized as follows:

- Introduce a new dataset developed by lifelogging camera for food places classification, named “EgoFoodPlaces”.
- Proposed a new deep network architecture based on multi-scale Atrous convolution networks [4] for improving classification rate of food places in egocentric photo-streams.

The paper is organized as follows. Section 2 explores the proposed approach. In turn, Section 3 describes about our in-house dataset and demonstrate the experimental results and discussions. Finally, conclusion and future work are explained in Section 4.

2 Proposed Approach

The proposed deep model, MACNet, is based on multi-scale Atrous convolution networks for extracting the key patterns of food places in the input egocentric photo-streams. The multi-scale features are used to fine-tune four layers of a pre-trained ResNet-101 model as shown in figure 3. The input images are scaled to five resolutions (i.e., the original size and four different resolutions) as shown in figure 3. The five images with different resolutions feeds to Atrous convolution networks [4]. In MACNet, five blocks of Atrous convolution network with three

different rates per block are used to extract the key features of an input image. Atrous convolution network allows us to explicitly extract features with different scales. In addition, it adjusts filters size with the rate value in order to capture multi-scale information, generalizes standard convolution operation. We used 3×3 kernels in all blocks with different rate values set to 1, 2 and 3. More details about these networks presented in [5] and [4].

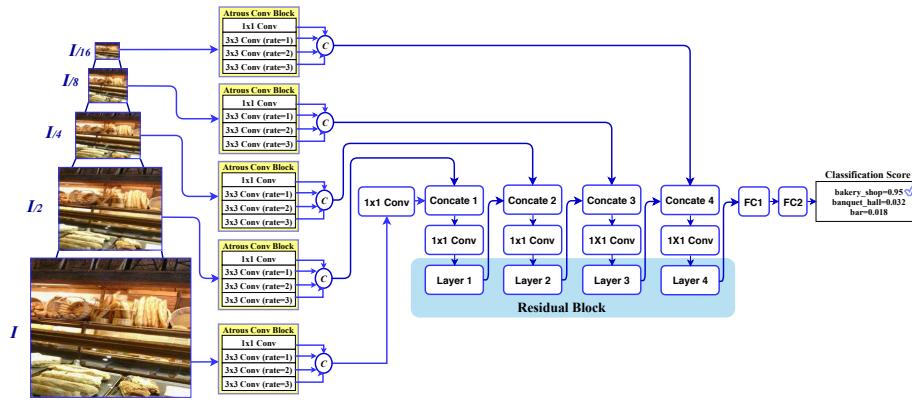


Fig. 3. Architecture of our proposed model (MACNet) for food places classification.

Following, four pre-trained ResNet-101 blocks are then used to extract 256, 512, 1024 and 2048 feature maps, respectively as shown in figure 3. The four ResNet-101 layers are with stride 2.0. Thus, the final output size of the last ResNet block is 1/16 of the input image size. Indeed, each ResNet is corresponding to a resolution level in the image pyramid. Each output of the five Atrous network blocks is followed by a pointwise convolution (i.e., 1×1 convolution) to reduce the computation complexity and the number of channels to be compatible with the input channels accepted by the corresponding ResNet layer. All Atrous convolution networks and 1×1 convolution are randomly initialized. The output of the fourth ResNet layer feeds to a fully connected layer with 1024 neurons followed by another fully connected layer with 512 neurons. A dropout function with 0.5 is used for reducing overfitting in the two fully connected layers. A ReLU function is also used as an activation function for the first fully connected layer. In turn, a softmax function (i.e., normalized exponential function) is finally utilized as a logistic function for producing the final probability of the input image to each class. The two fully connected layers are randomly initialized.

In this paper, we constructed a new dataset from egocentric images. In our dataset “EgoFoodPlaces”, the numbers of instances with different labels are very unbalanced. To deal with this issue, we used a weighted categorical cross-entropy function. For the cross-entropy with a multi-class classification, we calculated a

separate loss for each class label and then then sum the result as:

$$\ell_i = - \sum_{j=1}^N w_{y_j} y_j \log(\hat{y}_j), \quad (1)$$

where N is the number of instances, y_j is the actual label of the j th instance, \hat{y}_j is the prediction score, and w_{y_j} , the loss weight of the label y_j , is defined as:

$$w_{y_j} = 1 - \frac{N_{y_j}}{N}, \quad (2)$$

where N_{y_j} refers to the number of instances per label y_j .

3 Experimental Results

3.1 Datasets

In this work we introduce to “EgoFoodPlaces”, a new egocentric photo-streams dataset that devolved by 12 users by using wearable camera (narrative clip 2⁴, which has an image resolution of 720p and 1080p by a 8-megapixel camera with an 86-degree field of view and capable of record about 4,000 photos or 80 minutes of 1080p video at 30fps). Figure 1 shows some example images from the EgoFoodPlaces dataset. It is composed by egocentric photo-streams describing the users daily food related activities (preparing, eating, buying, etc). Some images are used in our data, EgoFoodPlaces, from the EDUB-Seg dataset [6].

The first-person used the camera fixed to his chest from morning to night before sleeping. Figure 2 shows the day hours for capturing the images. Every frames of a photo-stream is recording first-person activities, which is very helpful to analyze different pattern of first-person lifestyle. However, the captured images have different challenges, such as background variation, lighting change, and handling objects sometimes occluded during the photo-stream. In addition, the constructed dataset has unbalanced classes. However, it is not possible to make it as a balanced dataset by reducing images from other classes, since some classes have very small number of images. The classes with few images are related to some food places that do not have rich visual information (e.g., candy store) or the users do not spend much time at there (e.g., butchers shop). In turn, we have very large number of images are of visited places with rich visual information that refer to daily contexts (e.g., kitchen, supermarket), or of places, where we send more times (e.g., restaurant). We labelled our dataset manually by taking the reference labels related to food places from the Places2 dataset [17]. Since, some of the classes related to food places from the Places2 dataset [17] are not available (e.g., beer garden). Therefore, we excluded these classes from EgoFoodPlaces.

Twenty-two classes of food places are described in our dataset as shown in Table 1. We have split EgoFoodPlaces into three sets: train, validation and test.

⁴ <http://getnarrative.com/>

Table 1. The distribution of images per class in the EgoFoodPlaces dataset.

Classes	Train		Val		Test		Classes	Train		Val		Test				
	images	events	images	events	images	events		food_court	images	events	ice_cream_parlor	images	events	kitchen	images	events
bakery_shop	96	15	15	3	28	4	food_court	161	6	37	2	06	1			
banquet_hall	203	1	52	1	96	1	ice_cream_parlor	70	4	12	2	25	1			
bar	1121	23	137	5	374	6	kitchen	2701	81	389	13	743	23			
beer_hall	296	1	62	1	318	1	market.indoor	644	15	97	3	163	4			
butchers_shop	251	4	11	1	15	1	market.outdoor	1271	11	13	2	104	3			
cafeteria	1238	23	141	5	310	6	picnic_area	659	4	89	2	173	1			
candy_store	172	4	26	2	55	1	pizzeria	1022	3	125	1	265	1			
coffee_shop	1662	29	210	5	441	8	pub.indoor	342	7	60	1	109	2			
delicatessen	652	6	29	2	05	1	restaurant	4198	29	481	5	1044	8			
dining_room	2481	73	326	12	832	21	supermarket	3019	70	477	10	827	20			
fastfood.restaurant	858	14	102	2	217	4	sushi_bar	1151	7	195	1	296	2			

The images of each set were not randomly choose to avoid of taking similar images from the same events. Thus, we split the dataset based on food event information. The events represents the entry and exit image frame from the places visited. This can make the dataset more robust to train and validate our model.

3.2 Experimental setup

The proposed model is implemented on PyTorch[12]: an open source deep learning library. For the optimization method, we used the Stochastic Gradient Descent (SGD) [8] with momentum of 0.9 and weight decay of 0.0005. For adjusting learning rate depending on first and second order moments of the gradient, we used a “step” learning rate policy [14] and selected a base learning rate of 0.001 and the step is 20. In order to increase the number of images related to a class having few images, we used data augmentation. For data augmentation, we performed random crop, image brightness and contrast change with 0.2 and 0.1, respectively. We also use random affine transform between the angle of -20 and 20, image translation of 0.5, random scale between 0.5 and 1.0, and random rotation of 10 degrees. The optimized batch size is set to 32 for training and the number of epochs is set to 100. All the experiments are executed on NVIDIA TITAN X with 12GB memory taking around 20 hours to train the network. All these parameters are used for all tested methods in our experiments.

3.3 Evaluation metrics

Since the constructed dataset, EgoFoodPlaces, is highly imbalanced, the classification performance of all tested methods was assessed by not only using the accuracy, but also using other three evaluation measures: precision, recall, and F1-score.

3.4 Comparison with classification methods

Three different CNN architectures, specifically the VGG-16, InceptionV3, and ResNet-50, are used in a comparison to assess our proposed model, MACNet.

VGG-16: We fine-tuned a VGG-16 network proposed in [13] in the all 16 layers were back-propagated, and the SGD optimization method used.

ResNet-50: The ResNet-50 network proposed in [9] was fine-tuned and was optimized using SGD.

InceptionV3: The InceptionV3 network proposed in [5] was also fine-tuned with SGD as an optimization method.

3.5 Results and discussions

We compared the performances of VGG-16, ResNet-50 and InceptionV3 to our proposed model, MACNet as shown in Table 2. MACNet yielded an average of Precision of 72%, Recall of 60% and F1-score of 65% with the validation set, and about 70%, 57% and 63%, respectively with the test set. Our experiments demonstrated that the food places classification scores obtained with MACNet are better than the scores of the three test models on both validation and test set. However, InceptionV3 provided acceptable results with around 61%, 50% and 55 with both validation and test sets. In turn, VGG-16 yielded the worst scores among the four tested method. This means that the MACNet based on multi-scale Atrous convolution networks can be able to improve the classification of food places in egocentric photo-images. Furthermore, the Top-1 and Top-5

Table 2. The average Precision, Recall and F1-score of both validation and test sets of the EgoFoodPlaces dataset with VGG-16, ResNet-50, InceptionV3 and the proposed MACNet model.

Models	Validation			Test		
	Precision	Recall	F_1 -score	Precision	Recall	F_1 -score
VGG-16	38.12	25.06	30.24	36.46	24.85	29.55
ResNet-50	61.30	49.04	54.48	59.07	47.44	52.62
InceptionV3	63.91	52.13	57.42	61.39	50.51	55.42
MACNet	72.33	59.53	65.37	69.54	57.19	62.76

accuracy of the three test models, VGG-16, ResNet-50 and InceptionV3, and the proposed MACNet model are shown in Table 3. For the validation set, MACNet yielded more than a 10% improvement in Top-1 accuracy with respect to the VGG-16 model, and around a 4% improvement with respect to both ResNet-50 and InceptionV3 models. Regarding to the test set, MACNet lead to a 3% improvement to the three tested model.

Figure 4 shows the F1-score per class with the four tested methods over 22 classes of the validation and test set of EgoFoodPlaces. In the most classes (e.g., dining room, sushi bar, ice cream, coffee shop and food court), MACNet yielded a significant improvement of F1-score. In some cases (e.g., hall bar and pub indoor), ResNet-50 provided better results than the other methods. In turn, VGG-16 can classify the food places in the EgoFoodPlaces better than the other tested methods, such as picnic area and bakery shop. While, InceptionV3 did not

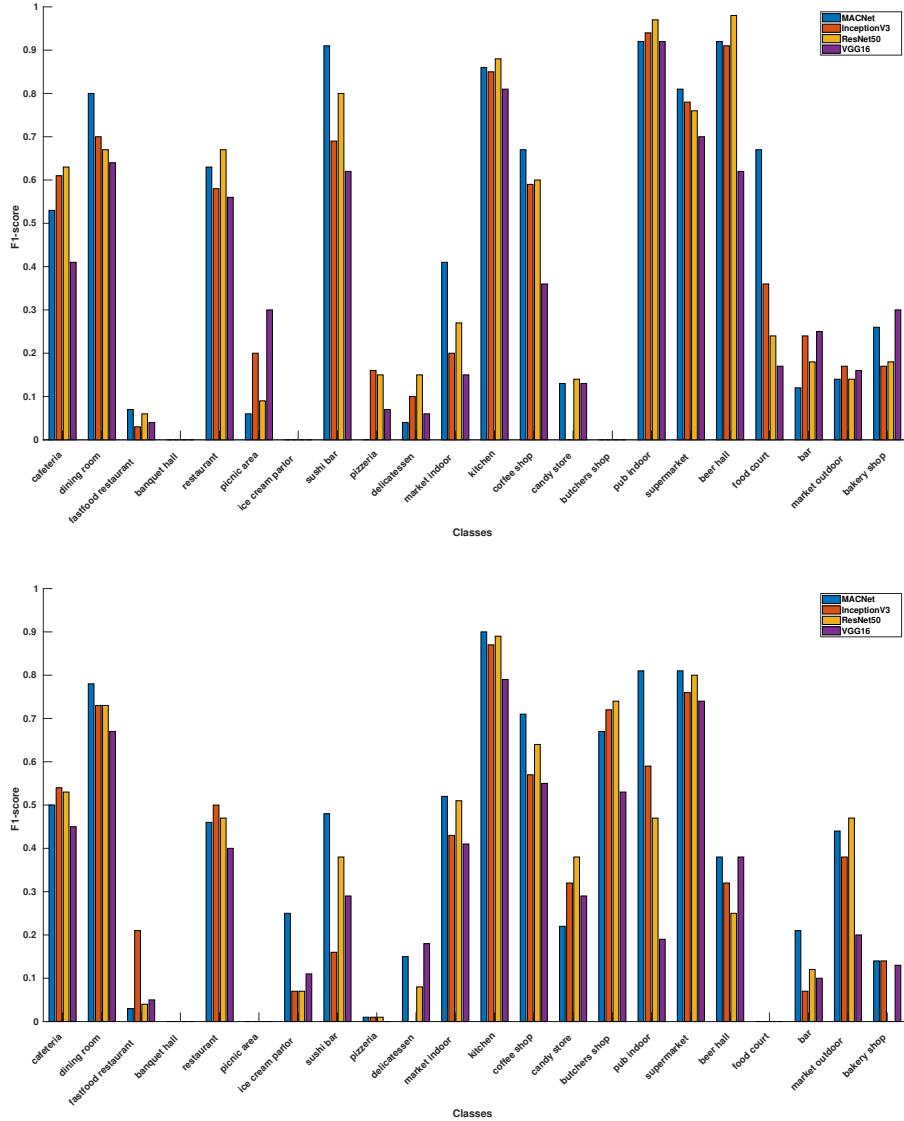


Fig. 4. The resulted of F1-score of the (Top) validation set (down) test set of the EgoFoodPlaces dataset with three methods VGG-16, ResNet-50, InceptionV3 and the proposed MACNet model.

Table 3. The average Top-1 and Top-5 accuracy of both validation and test sets of the EgoFoodPlaces dataset with VGG-16, ResNet-50, InceptionV3 and the proposed MACNet model.

Models	Validation		Test	
	Top-1	Top-5	Top-1	Top-5
VGG-16	53.93	83.98	49.20	81.07
ResNet-50	61.31	85.48	55.38	84.95
InceptionV3	60.82	88.22	54.76	85.60
MACNet	64.80	90.70	58.47	86.78

outperform the other methods per class, however its average F1-score is better than VGG-16 and ResNet-50 and less than MACNet. Note that the zero values of F1-score shown in figure 4 are related to the classes that have few images per class. Moreover, the improvement over the overlapping classes can also be seen on the confusion matrices shown in figure 5. This means that the multi-scale Atrous convolution networks improved the food places classification belonging to classes that score similar probabilities.

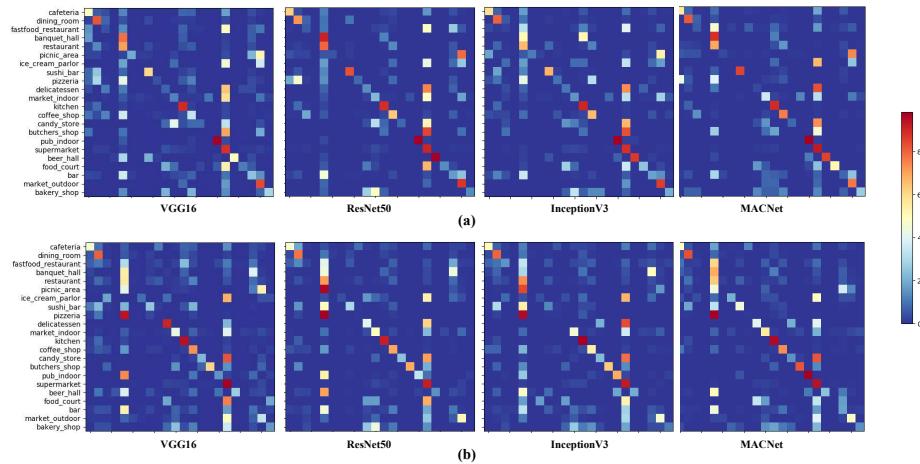


Fig. 5. The confusion matrix of the (top) validation set and (down) test set of the EgoFoodPlaces dataset with three methods VGG-16, ResNet-50, InceptionV3 and the proposed MACNet model.

4 Conclusions

In this paper, we proposed a new architecture of deep model, MACNet for food places recognition from egocentric photo-streams. MACNet is based on multi-scale Atrous convolution networks that fusing with four pre-tranied layers of

ResNet-101 and two fully connected layers. MACNet extracting the features of different resolutions of an input image of first-person images. In addition, we constructed an in-house private egocentric photo-streams dataset containing 22 classes of food places, named “EgoFoodPlaces”. Experimental results on this dataset demonstrated that the proposed approach achieved better performances than a three common architecture of classification methods, VGG-16, ResNet-50 and InceptionV3. The proposed method achieved an overall Top-5 accuracy around 86.78% over the test set of EgoFoodPlaces. Future work aims to use the MACNet model with a complete framework for people food behaviour.

Acknowledgement. This research is funded by the program Martí Franques under the agreement between Universitat Rovira Virgili and Fundació Catalunya La Pedrera. This work was partially founded by TIN2015-66951-C2, SGR 1742, ICREA Academia 2014, Marat TV3 (n 20141510), and Nestore Horizon2020 SC1-PM-15-2017 (n 769643).

References

1. Aghaei, M., Dimiccoli, M., Ferrer, C.C., Radeva, P.: Towards social pattern characterization in egocentric photo-streams. *Computer Vision and Image Understanding* (2018)
2. Aghaei, M., Dimiccoli, M., Radeva, P.: Towards social interaction detection in egocentric photo-streams. In: Eighth International Conference on Machine Vision (ICMV 2015). vol. 9875, p. 987514. International Society for Optics and Photonics (2015)
3. Bolanos, M., Dimiccoli, M., Radeva, P.: Toward storytelling from visual lifelogging: An overview. *IEEE Transactions on Human-Machine Systems* **47**(1), 77–90 (2017)
4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE transactions on pattern analysis and machine intelligence* **40**(4), 834–848 (2018)
5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. *arXiv preprint arXiv:1706.05587* (2017)
6. Dimiccoli, M., Bolaños, M., Talavera, E., Aghaei, M., Nikolov, S.G., Radeva, P.: Sr-clustering: Semantic regularized clustering for egocentric photo streams segmentation. *Computer Vision and Image Understanding* **155**, 55–69 (2017)
7. Grimm, E.R., Steinle, N.I.: Genetics of eating behavior: established and emerging concepts. *Nutrition reviews* **69**(1), 52–60 (2011)
8. Gulcehre, C., Sotelo, J., Moczulski, M., Bengio, Y.: A robust adaptive stochastic gradient method for deep learning. In: *Neural Networks (IJCNN), 2017 International Joint Conference on*. pp. 125–132. IEEE (2017)
9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. pp. 770–778 (2016)
10. Kemps, E., Tiggemann, M., Hollitt, S.: Exposure to television food advertising primes food-related cognitions and triggers motivation to eat. *Psychology & health* **29**(10), 1192–1205 (2014)

11. Moran, T.H., Gao, S.: Looking for food in all the right places? *Cell metabolism* **3**(4), 233–234 (2006)
12. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch (2017)
13. Schüssler-Fiorenza Rose, S.M., Stineman, M.G., Pan, Q., Bogner, H., Kurichi, J.E., Streim, J.E., Xie, D.: Potentially avoidable hospitalizations among people at different activity of daily living limitation stages. *Health services research* **52**(1), 132–155 (2017)
14. Sebag, A., Schoenauer, M., Sebag, M.: Stochastic gradient descent: Going as fast as possible but not faster. In: OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (2017)
15. de Wijk, R.A., Polet, I.A., Boek, W., Coenraad, S., Bult, J.H.: Food aroma affects bite size. *Flavour* **1**(1), 3 (2012)
16. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on. pp. 3485–3492. IEEE (2010)
17. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in neural information processing systems. pp. 487–495 (2014)