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Abstract. Spectral imaging sensors often suffer from low spatial res-
olution, as there exists an essential tradeoff between the spectral and
spatial resolutions that can be simultaneously achieved, especially when
the temporal resolution needs to be retained. In this paper, we propose
a novel deep residual attention network for the spatial super-resolution
(SR) of spectral images. The proposed method extends the classic resid-
ual network by 1) directly using the 3D low-resolution (LR) spectral im-
age as input instead of upsampling the 2D bandwise images separately,
and 2) integrating the channel attention mechanism into the residual
network. These two operations fully exploit the correlations across both
the spectral and spatial dimensions and greatly promote the performance
of spectral image SR. In addition, for the scenario when stereo pairs of
LR spectral and high-resolution (HR) RGB measurements are available,
we design a fusion framework based on the proposed network. The spa-
tial resolution of the spectral input is enhanced in one branch, while the
spectral resolution of the RGB input is enhanced in the other. These
two branches are then fused together through the attention mechanism
again to reconstruct the final HR spectral image, which achieves further
improvement compared to using the single LR spectral input. Experi-
mental results demonstrate the superiority of the proposed method over
plain residual networks, and our method is one of the winning solutions
in the PIRM 2018 Spectral Super-resolution Challenge.
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1 Introduction

Spectral imaging sensors aim to obtain the spectrum of the scene in terms of tens
or hundreds of bandwise images, each corresponding to a certain narrow wave-
length range. The spectral image obtained in this way plays an important role in
many fields such as remote sensing [16], medical diagnosis [17], and agriculture
[18], also including various computer vision tasks such as image segmentation
[43], face recognition [34], and object tracking [44]. Therefore, the development
of spectral imaging systems has been an active research field in recent years [47],
[29], [7], [50], [15], [51].
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However, to capture 3D spectral images with existing 2D sensors, trade-offs
between spectral and spatial/temporal resolutions are inevitable [3], [14]. Con-
ventional imaging spectrometers usually operate in a scanning manner, which
simply trades the temporal resolution for the spectral resolution [5], either scan-
ning the space [3], [35] or scanning the spectrum [14], [37]. On the other hand,
to enable spectral acquisition for dynamic scenes, snapshot spectral imagers re-
lying on computational reconstruction have been developed in the last decade.
The representative techniques along this line include computed tomographic
imaging spectrometry (CTIS) [10], prism-mask spectral video imaging system
(PMVIS) [7], and coded aperture snapshot spectral imager (CASSI) [47]. These
snapshot spectral imagers support spectral video acquisition, yet at the cost
of sacrificing the spatial resolution or reconstruction fidelity. To address this
issue, dual-camera systems incorporating a snapshot spectral imager and an
RGB/panchromatic camera with a beam splitter are proposed [30], [48], [49],
which combine the high spectral resolution of the former and the high spatial
resolution of the latter. Still, these systems are of high cost in terms of hardware
implementation.

As an alternative solution, spatial super-resolution (SR) of spectral images
has also attracted tremendous research efforts, where only a low-resolution (LR)
spectral image is required as input and the high-resolution (HR) spectral im-
age is obtained without the need of additional hardware. Similar to single-image
SR, mainstream solutions for this ill-posed problem are example-based ones. As
a representative, the sparse coding based approaches learn the relationship be-
tween LR spectral cubes and the corresponding HR counterparts as a dictionary
from an external database [1], [2], [13], where the HR spectral images can be
obtained through scanning-based spectrometers. With the success of deep learn-
ing in single-image SR [11], [24], CNN-based methods rapidly emerge to directly
learn an end-to-end mapping between LR and HR spectral images [28], [31],
[54], [27], which achieve promising performance while promoting the efficiency
compared to sparse coding. Following this trend, we propose an advanced net-
work architecture for spectral image SR, which integrates the powerful channel
attention mechanism [20] with the classic residual blocks [19]. Consequently, the
correlations across both the spectral and spatial dimensions are fully exploited
and the performance of spectral image SR is significantly improved over plain
residual networks.

In practical applications where spectral images are captured, it is often pos-
sible to capture an RGB/panchromatic image of the same scene at the same
time with a much higher spatial resolution. Different from the above men-
tioned systems that using a beam splitter [30], [48], the resulting spectral and
RGB/panchromatic measurements are not aligned but rather in a stereo con-
figuration, which thus relieves the difficulty of hardware implementation. This
additional HR RGB/panchromatic image can be of great help for enhancing the
LR spectral image, which is usually referred to as color-guided spectral image
SR [23], [25], [53] or pan-sharpening [38], [36], [26] and has been investigated
extensively in the literature. Based on the proposed network, we then design
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a fusion framework for color-guided spectral image SR. The spatial resolution
of the spectral input is enhanced in one branch, and the spectral resolution of
the RGB input is enhanced in the other. These two branches are then fused
together through the attention mechanism again to reconstruct the final HR
spectral image, which achieves further improvement compared to using the sin-
gle LR spectral input.

The main contributions of this paper can be summarized as follows:

– An advanced network architecture for spectral image SR, which integrates
the powerful channel attention mechanism with the classic residual blocks.

– A fusion framework for color-guided spectral image SR based on the proposed
network, which is designed for the scenario when stereo pairs of LR spectral
and HR RGB measurements are available.

– State-of-the-art results on the above two tasks, and one of the winning so-
lutions in the PIRM 2018 Spectral Image SR Challenge [40], [41].

2 Related Work

Spectral image SR. Different from reconstructing a spectral image from the
corresponding RGB image [52], [39] (sometimes also referred to as spectral SR),
the spectral image SR here denotes to spatial resolution enhancement of a spec-
tral image. Similar to single-image SR that enhances the spatial resolution of
a 2D image, mainstream solutions for this ill-posed problem are example-based
ones. As a representative, the sparse coding based approaches learn the relation-
ship between LR spectral cubes and the corresponding HR counterparts as a
dictionary from an external database [1], [2], [13], where the HR spectral images
can be obtained through scanning-based spectrometers. With the success of deep
learning in single-image SR [11], [24], CNN-based methods rapidly emerge to di-
rectly learn an end-to-end mapping between LR and HR spectral images [28],
[31], [54], [27], which achieve promising results while promoting the efficiency
compared to sparse coding. With even advanced network architectures such as
the one proposed in this paper, the performance of spectral image SR is expected
to be further improved.

Color-guided spectral image SR. The approaches which fuse an LR spec-
tral image with an HR RGB image based on matrix factorization have been
actively investigated [23], [25], [53]. These approaches first unfold the spectral
image as a matrix, and then decompose the matrix as spectral basis and corre-
sponding coefficients. Spectral image SR then becomes the estimation of spectral
basis and corresponding coefficients from the LR spectral and HR RGB mea-
surements of the same scene. In addition to considering the spectral information,
some approaches also use the spatial structures of spectral images for SR [42],
[46], [12]. These matrix factorization based methods often start by unfolding the
3D data structures into matrices. However, operating with matrices makes it
hard to fully exploit the inherent spatial-spectral correlations in spectral images.
These correlations can be better exploited using a CNN-based fusion framework,
as demonstrated in this paper.
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Attention mechanism. Attention can be viewed as an adaptation mech-
anism which automatically allocates processing resources towards the most in-
formative components of an input [45]. Following the successful application in
neural machine translation [45], increasingly more methods have been proposed
to apply attention into the deep network [6], [22], [4], [32], [55]. Inspired by [55],
we integrate the channel attention mechanism [20] with the residual block [19],
which promotes the reconstruction fidelity of spectral image SR.

3 Spectral Image SR Network

3.1 Baseline VDSR-3D Network

A 3D spectral image can be viewed as a stack of 2D bandwise grayscale images.
Hence, classic single-image SR networks can be directly applied to the spec-
tral image SR task. Take the well-known VDSR [24] network for example, the
network can use each LR bandwise image as input and output the correspond-
ing HR image, and the HR spectral image can be obtained by stacking these
reconstructed HR bandwise images. However, this simple reuse of VDSR is not
efficient since it ignores the correlations across the spectral dimension. A natural
extension would be taking the 3D LR spectral image as input of the network, in
which the spectral correlations are learned automatically. This modified VDSR
network, denoted as VDSR-3D, is regarded as the baseline model in this paper.

Although VDSR-3D can achieve a better performance compared with its 2D
version, as demonstrated later, there are still some problems in the VDSR ar-
chitecture. First, it requires a bicubic-interpolated image as the input, which is
a sub-optimal solution since a deconvolutional layer can easily learn a better
operation than bicubic in a back-propagation manner. Moreover, according to
the experimental results, it fails to achieve an improved performance when deep-
ening the network structure, which is not favorable for pursuing more accurate
solutions. To address these problems, we propose the deep residual attention
network that greatly improve the capability of VDSR-3D.

3.2 Deep Residual Attention Network

The architecture of our proposed deep residual attention network is shown in
Figure 1. The network mainly consists of three modules: feature extraction,
feature mapping, and reconstruction. We use one deconvolutional layer and one
convolutional layer to extract the feature as

F0 = fE(ILR), (1)

where fE denotes the feature extraction module. Note that, we set the stride of
deconvolution the same as the upsampling scale (i.e., ×3 in our experiments) to
convert an LR spectral input ILR to the HR space for succeeding procedures.
The obtained feature F0 is then fed into the feature mapping module, where a
number of residual blocks are adopted to implement this procedure.
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Fig. 1. Deep residual attention network for spectral image SR

Inspired by [55], we integrate the channel attention mechanism [20] with
the residual block [19] to generate the attention resblock, which is also shown in
Figure 1. Let F

′

l (l = 1, . . . , L) denote the intermediate feature in the lth attention
resblock. The channel attention coefficient δl can be calculated as

δl = Sig(C(PG(F
′

l ))),

PG(F
′

l,c) =
1

H ×W

H
∑

i=1

W
∑

j=1

F
′

l,c(i, j),
(2)

where H and W denote the spatial resolution of the feature map, F
′

l,c(i, j) de-

notes the value at position (i, j) in the cth channel of the intermediate feature
in the lth attention resblock, PG(·) denotes the global average pooling function,
C(·) denotes the combining operation which includes two successive convolu-
tional layers (with a 1 × 1 kernel size) and a ReLu activation function [33] in
between, and Sig(·) denotes the sigmoid function for normalization.

Obtained the channel attention coefficient δl, the output of the lth attention
resblock Fl can then be calculated as

Fl = Fl−1 + δl · F
′

l . (3)

With the proposed channel attention, the residual component in the attention
resblock is adaptively weighted. Compare to the plain convolution in VDSR-3D,
the attention resblock offers higher reconstruction fidelity with a much deepened
network. Moreover, we adopt the skip connection in each stack of the attention
resblock to relieve the vanishing of gradient and ease the convergence of the
network. The super-resolved spectral image ISR is finally reconstructed as

ISR = fR(FL), (4)
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Fig. 2. Color-guided fusion framework for spectral image SR

where fR(·) denotes the reconstruction module implemented using a single con-
volutional layer.

3.3 Color-Guided Fusion Framework

In practical applications where spectral images are captured, it is often possible
to capture an RGB image of the same scene at the same time with a much
higher spatial resolution. However, the resulting spectral and RGB images are
not aligned but rather in a stereo configuration. A registration step is needed to
address the scene disparity and generate the aligned RGB image as an input for
SR in addition to the spectral image. This aligned HR RGB image can provide
more information in the spatial dimension to facilitate the spectral image SR.

To this end, we design a color-guided fusion framework with a two-branch
architecture to implement the fusion between the spectral information in the
spectral image and the spatial information in the RGB image. The fusion frame-
work is shown in Figure 2. The two branches share the same basic network
structure, i.e., the deep residual attention network described in section 3.2. Note
that the upscaling operation is no longer needed in the RGB branch, while in the
spectral branch it is moved to the tail of the network (due to the restriction of
GPU memory in implementation). A concatenating operation is used to combine
the features from these two beaches. The reconstructed HR spectral image ISR

can be obtained as

ISR = fFUS(fSPE(ILR)⊕ fRGB(IRGB)), (5)

where fRGB(·), fSPE(·), and fFUS(·) denotes the RGB branch, the spectral
branch, and the fusion part, respectively. The symbol ⊕ denotes the concate-
nating operation between features output from these two branches. Note that
another attention resblock is used in the fusion part.

3.4 Implementation Details

Training process. We train the network of Track 1 (spectral image SR) using
LR spectral cubes with a size of 20×20×14 and corresponding HR cubes with a
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size of 60× 60× 14. We set the batch size as 64 and adopt the ADAM optimizer
with β1 = 0.9, β2 = 0.999, and ǫ = 10−8. The initial leaning rate is set as 1×10−4

and then it is decreased to half every 1× 105 iterations of back-propagation. We
stop training when no notable decay of training loss is observed. Based on the
default setting of Track 1, we add the aligned HR RGB patches as inputs to train
the network of Track 2 (color-guided spectral image SR), which have the same
spatial size with the HR spectral cubes. We implement the proposed networks
based on the PyTorch framework and train them using a 1080Ti GPU. It takes
about 12 hours to train each network.

Testing process. For Track 1, there is no difference between the training
and testing processes. Yet for Track 2, we conduct a post-processing operation
to further promote the performance. Since the aligned RGB images are obtained
using the FlowNet 2.0 [21] according to the challenge configuration, black pixels
are usually observed around the borders due to the imperfect registration. To
address this issue, we first crop 12 pixels in the four-direction borders and then
make them up using the network of Track 1. In other words, the center part
of the reconstructed image is obtained using the color-guided fusion framework,
while the boundary pixels are only reconstructed from the LR spectral image.

Loss function. CNN-based methods for single-image SR usually adopt the
mean square error (MSE) as the loss function during training [11], [24], [9],
which has also been applied to spectral reconstruction tasks [52]. However, the
luminance level in spectral images usually varies significantly among different
bands, and the same deviation in the pixel value may have different influence to
the bands with different luminance levels. It thus makes the MSE loss generate
a bias towards the bands with high luminance levels, which is not desired be-
cause each band matters equally. Hence, recent methods adopt the mean relative
absolute error (MRAE) as a substitute [39].

Let ISR(i) and IGT (i) denote the i
th(i = 1, . . . , N) pixel of the reconstructed

and groundtruth spectral images, respectively. The MRAE is formulated as

MRAE =
1

N

N
∑

i=1

(

| I
(i)
SR − I

(i)
GT | /I

(i)
GT

)

. (6)

When there exists zero points in the groundtruth image, the MRAE loss
will become infinite, making the network fail to converge. To address this issue,
a small value of ǫ1 is added to the denominator of MRAE. Considering the
intensity range of the spectral data is from 0 to 65535, ǫ1 is set to 1 according
to the challenge configuration, deriving the modified MRAE as

MRAE′ =
1

N

N
∑

i=1

(

| O((I
(i)
SR))− I

(i)
GT | /(I

(i)
GT + ǫ1)

)

, (7)

where the operation O(·) rounds the small value less than 1 into 0, which further
decreases the reconstruction error caused by the zero points.

To investigate the impact of different loss functions, we also implement the
spectral information divergence (SID) function which is designed to evaluate the
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spectral similarity and discriminability [8]. The SID is formulated as

SID =

N
∑

i=1

(

D
(

I
(i)
SR || I

(i)
GT

)

+D
(

I
(i)
GT || I

(i)
SR

))

,

D
(

I
(i)
SR || I

(i)
GT

)

= O((I
(i)
SR)) log

((

O((I
(i)
SR)) + ǫ2

)

/
(

I
(i)
GT + ǫ2

))

,

D
(

I
(i)
GT || I

(i)
SR

)

= I
(i)
GT log

((

I
(i)
GT + ǫ2

)

/
(

O((I
(i)
SR)) + ǫ2

))

,

(8)

where ǫ2 is set to 1× 10−3 according to the challenge configuration to avoid the
infinite value caused by the zero points.

4 Experimental Results

4.1 Dataset and Evaluation

The experiments are conducted strictly following the instructions of the PIRM
2018 Spectral Image SR Challenge [40], [41]. There are two tracks in this chal-
lenge. Track 1 requires to upscale an LR spectral image (with a size of 80 ×
160 × 14) by a factor of 3 in the spatial dimension. The dataset for this track
consists of 240 spectral images captured by an IMEC 16-band snapshot spectral
imager, which is split into 200 for training, 20 for validation, and 20 for testing.
Track 2 requires to accomplish the same task with the help of corresponding HR
RGB images (with a size of 240× 480). The dataset contains 120 pairs of stereo
images, with one view captured by the IMEC 16-band snapshot spectral imager
and the other by an ordinary color camera. The images are split into 100 pairs
for training, 10 for validation, and 10 for testing. Also, the dataset provides a
registered version of the RGB images using the FlowNet 2.0 [21].

In the development phase, data augmentation is performed on the training
images which are randomly rotated by 90◦, 180◦ , 270◦, and flipped horizontally.
We reserve 10 pairs of images as our own validation set. Our reported results
are all calculated on the official validation set. No additional preprocessing or
dataset is needed for both tracks. The main ranking metrics of this challenge
are MRAE, SID, and the mean opinion score (MOS). Note that the challenge
utilizes the normalized SID as the final metric, which may be different from the
one used in this paper.

4.2 Ablation Experiments

Loss function. To investigate the impact of different loss functions, we conduct
a series of experiments. The experimental results are shown in Table 1. We first
compare the results between using MARE and SID as loss function alone. There
seems to exist a trade-off between these two metrics and one increases while
the other decreases. To prove this, we further design a combined loss function
where the weight of SID is ten times that of MRAE, which gives a simple joint
optimization according to cross-validation. The result shows that the SID can
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Table 1. Comparisons between different loss function settings. The MRAE and SID
are adopted as the metrics

Loss function MRAE SID Combined Fine-tune

MRAE 0.1215 0.1761 0.1234 0.1707
SID 135 104 117 104

3 9 15 21 27 33 39 45 51 57 63 69

Block number

0.1

0.11
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0.13

0.14

M
R

A
E

3 9 15 21 27 33 39 45 51 57 63 69

Block number

100

120

140

160

180

S
ID

Fig. 3. The influence of depth on the network performance

improve notably (i.e., 13%) by slightly sacrificing the performance in MARE
(i.e., 2%). We also use the SID as loss function to fine-tune the model pretrained
by MRAE. During the training process, the SID turns to decrease but the MRAE
increases at the same time, which again demonstrates the trade-off between SID
and MRAE. Finally, it converges to a similar point to that achieved by using the
SID as loss function alone. In the experiments below and in the challenge, we
use the MRAE as loss function alone since it is the primary evaluation metric.

Network depth. The depth is an important factor to determine the basic
capacity of the network. However, a deeper network does not always yield a
better performance. As depicted in Figure 3, a number of 45 attention resblocks
seems to be an optimal depth under both SID and MRAE metrics. Note that
when the block number goes up to 57, gradient exploding will occur in the
training process. To overcome this, the initial learning rate is lowered down to
1/5 of the original, which could result in the performance decrease in the deeper
structure. Also, we find that the initial value of the network can slightly affect the
performance but the conclusion holds. The other settings of the network are kept
the same to eliminate the influence of other hyper-parameters. In the experiments
below and in the challenge, we use 15 attention resblocks in consideration of
implementation speed.

4.3 Comparison with Baseline Models

To validate the effectiveness of the proposed deep residual attention network
(DRAN) and the color-guided fusion framework (Fusion), we first compare their
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Table 2. Comparisons between our proposed methods and baseline models. The val-
idation sets of the challenge are adopted for evaluation. Red color indicates the best
performance and blue color indicates the second best one

Dataset Bicubic VDSR-2D VDSR-3D DRAN Fusion

Track1 (MRAE) 0.2406 0.1790 0.1384 0.1215 -
Track2 (MRAE) 0.4202 0.3044 0.1464 0.1334 0.1173
Running Time (s) - 0.08 0.09 1.11 2.50

performance with the baseline models VDSR-2D and VDSR-3D (both with a
network depth comparable to DRAN). All these models are trained using the
whole training set of each track, and the official validation set is adopted for
evaluation. The quantitative results are listed in Table 2. As can be seen, for both
tracks, VDSR-3D outperforms VDSR-2D by a large margin, which indicates the
importance of exploiting correlations across different bands in spectral image
SR. Meanwhile, the results of DRAN show that the architecture of attention
resblocks has a distinct advantage over the plain residual networks. For Track 2,
the fusion method achieves 12% decrease in MRAE compared with DRAN, which
proves the usefulness of the HR RGB images as well as the fusion framework.

4.4 Ensemble Method and Running Time

For ensemble purpose, we flip and rotate the input image and treat it as another
input similar to data augmentation. Then we apply an inverse transform to the
corresponding output. Finally, we average the transformed output and the origi-
nal output to generate the self-ensemble result. In this way, further improvement
(3% decrease in MRAE) can be achieved.

We calculate the average running time using a 1080Ti GPU. The running
time includes the process of ensembling. The fusion method cost nearly double
time compared to a single DRAN since it needs the result of DRAN to recover the
cropped borders. And the VDSR-based models are slightly faster than DRAN.

4.5 Visual Quality Comparison

To evaluate the perceptual quality of spectral image SR, we show the visual
comparison of two images in Track 2 (for which all methods can be compared
together). Note that we average the spectral image across the spectral dimension
for a better visual experience in the spatial dimension. As can be seen in Figure
4 and Figure 5, the edge regions of super-resolved images from DRAN and
Fusion are notably shaper and clearer than the VDSR-based models and bicubic
interpolation. Also, with the help of HR RGB images, the blurring artifacts are
alleviated and more details of spectral images are recovered, if comparing the
results of Fusion and DRAN.

To further visualize the spectral accuracy of the reconstructed HR spectral
images, we show the error maps of three selected bands in the above two images
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(a) GT/ MRAE (b) Bicubic / 0.5183 (c) VDSR-2D / 0.3883

(d) VDSR-3D / 0.1781 (e) DRAN (Ours) / 0.1309 (f) Fusion (Ours) / 0.0963

Fig. 4. Visual comparison of a spectral image from the validation set of Track 2. All
14 bands are averaged for the evaluation of spatial information

0

(a) GT/ MRAE (b) Bicubic / 0.1114 (c) VDSR-2D / 0.0897

(d) VDSR-3D / 0.0916 (e) DRAN (Ours) / 0.0752 (f) Fusion (Ours) / 0.0536

Fig. 5. Visual comparison of a spectral image from the validation set of Track 2. All
14 bands are averaged for the evaluation of spatial information
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Fig. 6. Visual comparison of a spectral image from the validation set of Track 2. Three
bands are selected for the evaluation of spectral accuracy

in Figure 6 and Figure 7. As can be seen, on the one hand, the error of DRAN
and Fusion are smaller than the VDSR-based models and bicubic interpolation,
which again validates the effectiveness of the proposed method. On the other
hand, the error in the edge regions of Fusion is obviously smaller than that of
DRAN, which demonstrate that the HR RGB image mainly contributes to the
edge regions.

5 Conclusions

This paper presents a novel deep residual attention network for the spatial SR
of spectral images. The proposed method integrates the channel attention mech-
anism into the residual network to fully exploit the correlations across both the
spectral and spatial dimensions of spectral images, which greatly promotes the
performance of spectral image SR. In addition, we design a fusion framework
based on the proposed network when stereo pairs of LR spectral and HR RGB
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Fig. 7. Visual comparison of a spectral image from the validation set of Track 2. Three
bands are selected for the evaluation of spectral accuracy

measurements are available, which achieves further improvement compared to
using the single LR spectral input. Experimental results demonstrate the superi-
ority of the proposed method over plain residual networks, and our method is one
of the winning solutions in the PIRM 2018 Spectral Super-resolution Challenge.
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