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Abstract. This paper considers a convolutional neural network for im-
age quality enhancement referred to as the fast and efficient quality en-
hancement (FEQE) that can be trained for either image super-resolution
or image enhancement to provide accurate yet visually pleasing images
on mobile devices by addressing the following three main issues. First,
the considered FEQE performs majority of its computation in a low-
resolution space. Second, the number of channels used in the convolu-
tional layers is small which allows FEQE to be very deep. Third, the
FEQE performs downsampling referred to as desubpixel that does not
lead to loss of information. Experimental results on a number of standard
benchmark datasets show significant improvements in image fidelity and
reduction in processing time of the proposed FEQE compared to the re-
cent state-of-the-art methods. In the PIRM 2018 challenge, the proposed
FEQE placed first on the image super-resolution task for mobile devices.
The code is available at https://github.com/thangvubk/FEQE.git.
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1 Introduction

Image transformation is a classical problem which includes image super-resolution
and image enhancement, where an input image is transformed into an output
image with the desired resolution, color, or style [1,2,3]. For example, given a
low-quality image, a transformation may be introduced to produce a enhanced-
quality image that is as similar as possible to the desired high-quality image in
terms of resolution and/or color rendition.

Recent example-based methods based on deep convolutional neural networks
(CNN) have made great strides in image quality enhancement. However, most
of the methods are focused on improving only the qualitative measure such as
peak signal-to-noise ratio and mean-opinion score without any consideration to
execution time. As a results, their computational requirements are enormous
even for high-end desktops, not to mention mobile devices.

To address this problem, this paper considers a CNN referred to as Fast and
Efficient image Quality Enhancement (FEQE) for both image super-resolution
and enhancement for mobile devices. Preliminary results are illustrated in Figure

https://github.com/thangvubk/FEQE.git
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Fig. 1. Comparison in PSNR and processing time of proposed FEQE with recent state-
of-the-art methods on image super-resolution and enhancement.

1. To achieve the shown performance, the FEQE is designed to produce highest
possible image quality under a certain memory and computational constraint. To
reduce the computational complexity, an input image is downsampled and then
upsampled at the very first and very last layers respectively, keeping the con-
volution operation mostly in the low-resolution space. However, downsampling
generally leads to loss in information such that the operation is irreversible. To
address this problem, FEQE provides an effective way to perform downsampling
without losing information such that the operation becomes reversible, which is
referred to as desubpixel.

The proposed desubpixel systematically rearranges spatial features into chan-
nels, keeping the feature values intact, hence providing sufficient information for
inferences in the following convolutional layers. To improve prediction accuracy
with restricted resources, the FEQE is designed to be deep as possible but with
small channel-depth. As investigated in [4], with the same number of parameters,
a deeper network provides considerably higher capacity compared to that of a
shallow network. Experimental results show that the proposed FEQE achieves
significant improvements in both accuracy and runtime compared to recent state-
of-the-art methods.

The rest of this paper is organized as follows. Section 2 reviews various image
super-resolution and enhancement methods. Section 3 presents and explains the
effectiveness of the proposed method. Section 4 reports experiment results on
standard benchmark datasets. Finally, Section 5 summarizes and concludes the
paper.

2 Related Work

2.1 Image Super-Resolution

Image super-resolution has received substantial attention for its applications,
ranging from surveillance imaging [5,6], medical imaging [7,8] and object recog-
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nition [9,10]. Conventional methods are based on interpolation such as bilin-
ear, bicubic, and Lancroz [11], which are simple but usually produce overly-
smoothed reconstructions. To mitigate this problem, example-based methods
using hand-crafted features have been proposed, ranging from dictionary learn-
ing [12,13,14,15], neighborhood learning [16,17,18], to regression tree [19,20].

Recent advances in deep learning have made great strides in super-resolution
[1,21,22,23]. Dong et al. [1,24] first introduced SRCNN for learning the low-
to high-quality mapping in an end-to-end manner. Although SRCNN is only a
three-convolutional-layer network, it outperforms previous hand-crafted-feature-
based methods. In [25], Shi et al. propose subpixel modules, providing efficient
upsampling method for reconstructing high-quality images. It turns out super-
resolution also benefits from very deep networks as in many other applications.
The 5-layer FSRCNN [26], 20-layer VDSR [21], and 52-layer DRRN [27] show
significant improvements in terms of accuracy. Lim et al. [23] propose a very deep
modified ResNet [28] to achieve state-of-the-art PSNR performance. Although
their improvements in terms of accuracy are undeniable, the computational re-
quirements leave a lot to be desired especially for use in mobile devices.

2.2 Image Enhancement

Image enhancement aims to improve image quality in terms of colors, bright-
ness, and contrasts. Earlier methods are mainly based on histogram equalization
and gamma correction. Although these methods are simple and fast, their per-
formance are limited by the fact that individual pixels are enhanced without
consideration to contextual information. More advanced methods are based on
the retinex theory [29], and these methods estimate and normalize illumination
to obtain the enhanced image [30,31,32]. In [30], Zhang et al. utilize mutual con-
version between RBG and HSV color space in obtaining the desired illuminations
with a guided filter before obtaining the target enhanced image. Meanwhile, Fu
et al. [31] consider a novel retinex-based image enhancement using illumination
adjustment.

Recently, various CNN-based methods have been demonstrated to be con-
ducive for image enhancement [33,34,2]. Showing that multi-scale retinex is
equivalent to CNN with different Gaussion kernels, Shen et al. [33] propose
MSR-net to learn an end-to-end mapping between a low-light and a bright im-
age. Ignatov et al. [2] propose DPED to produce DLSR- from mobile-quality
images by using deep residual networks trained with a composite loss function
of content, color, and texture. Despite showing improvements in enhancing image
quality, these method exposed limitations in processing time since the compu-
tational operations are performed in the high-resolution space.

2.3 Convolutional Network for Mobile Devices

There has been considerable interest in building small and fast networks to per-
form various computer vision tasks for mobile devices [35,36,37,38,39]. To accel-
erate the networks, recent methods often simplify the convolution operation. One
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Fig. 2. Architecture of the proposed FEQE

such method simultaneously performs spatial convolution in each channel and
linear projection across channels [35]. In [36], Iandola et al. introduce Squeezenet
which achieves Alexnet-level accuracy with 50 times fewer parameters by lever-
aging small filter sizes. Meanwhile, Howard et al. [39] propose Mobilenet built
from depthwise separable convolutions, showing promising results on various
vision problems on mobile devices.

Beside speed, a small network is essential for mobile devices, which is gener-
ally obtained by shrinking, compressing, and quantizing the network. Molchanov
et al. [38] propose a pruning mechanism for resource efficient inferences by dis-
carding the least important neurons. In [37], Kim et al. perform network decom-
position which provides light networks for mobile applications. Another approach
is distillation [40], where a large network is trained to teach a small network.

3 Proposed Method

3.1 Network Architecture

Overview. Figure 2 presents the architecture of the proposed FEQE. Here, a
low-quality image is first downsampled with a factor of 4 using two proposed ×2
desubpixel modules. An 1×1 convolutional layer is used to adjust the number of
channels into the desired value. After downsampling into a low-resolution space,
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Fig. 3. Feature dimensions of the proposed FEQE in comparison with other networks.

the features are fed into a series of N residual blocks, each of which consists
of two 3 × 3 convolutional layers followed by instance normalization and ReLU
activations. It is noted that the instance normalization layers are used for image
enhancement task only to normalize the contrast variation among samples. The
output of the N -th residual block is upsampled using two ×2 subpixel models
before summing with the low-quality input image to produce a predicted high-
quality output image.

The proposed FEQE is a fast and efficient method for the following three
reasons. First, the considered FEQE performs the majority of its computation
in the low-resolution space. As illustrated in Figure 3, the computational com-
plexity of FEQE is much lower than that of resolution-unchanged or progressive
encoder-decoder networks. Second, the number of channels used in the residual
blocks is small which allows FEQE to be very deep. The reason is a convolutional
layer requires C2K2 parameters to map from a C-channel input to a C-channel
output using a kernel size of K ×K. Therefore, using the same number of pa-
rameters, reducing the number of channels n times can allow the network to
be deeper by a factor of n2. Third, the FEQE performs downsampling referred
to as desubpixel that does not lead to loss of information. The details of the
desubpixel modules are presented in the following subsections.

Desubpixel Downsample. Downsampling generally leads to loss of informa-
tion which is more severe when performed early in the network. Inspired by
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Fig. 5. Impact of each neuron in current layer to next layer in considered down-
sampling methods. In each subfigure, darker colors indicate higher impacts. Different
from the others, the proposed desubpixel provides an uniform neural impact.

the subpixel upsampling in [25], a reversible downsampling module referred to
as desubpixel performs downsampling such that its input can be recovered as
shown in Figure 4. The proposed desubpixel module systematically rearranges
the spatial features into channels to reduce spatial dimensions without losing in-
formation. Let U and D respectively denote subpixel-upsampling and desubpixel-
downsampling function. A concatenation of downsampling and upsampling op-
eration leads to the identity transform such that:

U(D(X)) = X. (1)

Figure 5 illustrates the effectiveness of the proposed desubpixel over other
common downsampling methods that includes convolution with stride 2, max-
pooling, and bilinear interpolation. It is assumed the contribution that a neuron
makes in a network is proportional to the number of links to the next layer. For
the 3×3 convolution with stride 2, the number of times a neuron in a particular
layer is filtered varies from 1,2 and 4. Here, a neuron indicated by the darkest
shade of blue is filtered 4 times while a neuron indicated by the lightest shade
of blue is filtered only once. Downsampling requires the stride to be at least 2,
and this leads to non-uniform contribution of neurons. In other words, certain
neurons of high importance may not be given a chance to contribute adequately.
In the 2 × 2 max-pooling, only one out of four neurons in a 2 × 2 block is con-
nected to the next layer. Although the pooling filter selects the most prominent
neuron, the accuracy degradation in the reconstruction is inevitable as a result
of pruning. In the bilinear interpolation, every 2× 2 neurons are represented by
their weighted sum, which can be thought of as a ”relaxed” max-pooling. As in
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other two, the bilinear interpolation is irreversible. The proposed ×2 desubpixel
permits for all neurons an equal opportunity to contribute. The desubpixel al-
lows arbitrary integer downsampling provided that the spatial dimension of the
input is desirable for channel rearrangement. Incorporating subpixel with desub-
pixel, the FEQE can be applied for various image-to-image mapping tasks such
as image generation, segmentation, style transfer, and image quality enhance-
ment. In this paper, the proposed method is applied for image super-resolution
and enhancement.

3.2 Loss Functions

Given a low-quality image ILQ, a network attempts to predict an enhanced image
that is as similar as possible to the desired high-quality image IHQ. Mathemati-
cally, the network G parameterized by θ is trained to minimize the loss between
Gθ(I

LQ) and IHQ as follows:

θ = argmin
θ

L
(

Gθ(I
LQ), IHQ

)

. (2)

The final loss function composes of mean-squared error (MSE) loss LM and a
VGG loss LV with trade-off parameters of αM and αV , respectively:

L = αMLM + αV LV . (3)

The MSE loss is the most common objective function in enhancing the fidelity
of the reconstructed images:

LM =
∑

i

∥

∥

∥
I
HQ
i −G(ILQ

i )
∥

∥

∥

2

2
. (4)

Meanwhile, the VGG loss aims to produce images with high perceptual quality:

LV =
∑

i

∥

∥

∥
φ(IHQ

i )− φ(G(ILQ
i ))

∥

∥

∥

2

2
. (5)

where φ denotes the feature maps obtained from the forth convolutional layer
before the fifth max-pooling layer of a pre-trained 19-layer VGG network [41].

4 Experiments

4.1 Single Image Super-Resolution

Datasets. The proposed FEQE is trained using DIV2K [42] dataset which
composes of 800 high-quality images (2K resolution). For testing, four standards
benchmark datasets are used, including: Set5 [16], Set14 [15], B100 [43], Ur-
ban100 [44].



8 T. Vu et al.

Table 1. Comparison in PSNR and SSIM of the proposed method with different
settings of channels C and residual blocks N . RED indicates better results.

Setting PSNR SSIM

C16 N20 28.75 0.9652

C32 N5 28.70 0.9650

Evaluation metrics The image super-resolution performance is measured on Y
(luminance) channel in YCbCr space. Following existing super-resolution stud-
ies, the conventional peak-signal-noise-ratio (PSNR) and structural similarity
(SSIM) index are used in the experiments. However, these metrics do not always
objectively reflect image quality. Additionally, a recently-proposed perceptual
metric is considered [45]:

Perceptual index =
(10−NRQM) + NIQE

2
, (6)

where NRQM and NIQE are the quality metrics proposed by Ma et al. [46] and
Mittal et al. [47], respectively. The lower perceptual indexes (PI) indicate better
perceptual quality.

Training Details. The images are normalized to a mean of 0 and a standard
deviation of 127.5. At training time, to enhance computational efficiency, the
images are further cropped into patches of size 196 × 196. It is noted that the
proposed network is fully convolutional; thus, it can take arbitrary size input at
test time.

The final network for image super-resolution task has 20 residual blocks. We
train the network using Adam optimizer [48] with setting β1 = 0.9, β2 = 0.999,
and ǫ = 10−8. Batch size is set to 8. We pre-train the network with MSE loss
and a downsampling factor of 2, before training with the full loss function and a
downsampling factor of 4. The numbers of iterations for pre-training and training
phases are set to 5× 105. In the default FEQE setting, the trade-off parameters
are set to αM = 1 and αV = 10−4. Besides, in the setting referred to as FEQE-P
such that PSNR is maximized, the trade-off parameters are changed to αM = 1
and αV = 0.

Our models are implemented using Tensorflow [49] deep learning framework.
The experiments are run on a single Titan X GPU, and it takes about 5 hours
for the networks to converge.

Ablation Study The effectiveness of the FEQE is demonstrated using an ab-
lation analysis. In the first part, we measure the performance of FEQE with
different downsampling methods, including convolution with stride 2, 2× 2 max
pooling, bicubic interpolation, and the proposed desubpixel. For the fair compar-
ison in computational complexity, a kernel size of 1×1 is used in the convolution
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Fig. 6. Comparison in PSNR and SSIM of the proposed FEQE with different down-
sampling methods.

Table 2. Comparison in PSNR/SSIM/PI of the proposed FEQE with other image
super-resolution methods. RED indicates the best results.

Method Set5 Set14 B100 Urban100

Bicubic 28.42/0.8096/7.32 26.08/0.7047/6.97 25.96/0.6691/6.94 23.14/0.6587/6.88

SRCNN 30.47/0.8610/6.79 27.57/0.7528/6.03 26.89/0.7108/6.04 24.51/0.7232/5.94

VDSR 31.53/0.8840/6.45 28.42/0.7830/5.77 27.29/0.7262/5.70 25.18/0.7534/5.54

FEQE-P (ours) 31.53/0.8824/6.03 28.21/0.7714/5.77 27.32/0.7273/5.79 25.32/0.7583/5.57

FEQE (ours) 31.32/0.8754/5.94 28.09/0.7660/5.40 27.23/0.7229/5.64 25.26/0.7547/5.50

Table 3. Comparison in computational complexity of the proposed FEQE with other
image super-resolution methods. RED indicates the best results.

Method # parameters # FLOPs Time (s)

SRCNN 69 × 103 128 × 109 0.04

VDSR 668 × 103 1231 × 109 0.16

FEQE (ours) 96 × 103 11 × 109 0.01

method. The remaining parts of the network and training hyper-parameters are
kept unchanged. Figure 6 illustrates the comparison results in terms of PSNR
and SSIM. The convolution method performs the worst, followed by the bicubic
and pooling methods. The proposed desubpixel achieves the best performance
in both PSNR and SSIM.

In the second part of the ablation study, the performance with different net-
work settings is presented. Table 1 shows that with the same number of param-
eters, the deep network with a small number of convolution channels performs
much better than the shallow one.
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Fig. 7. Qualitative comparison of FEQE with other image super resolution methods.
RED indicates the best results.
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Fig. 8. Visual comparison of FEQE with and without instance normalization.

Table 4. Quantitative comparison of the proposed FEQE with other image enhance-
ment methods. RED indicates the best results.

Method PSNR SSIM Time

SRCNN 19.77 0.8823 0.04

VDSR 20.11 0.8837 0.16

DPED 20.00 0.9192 0.20

FEQE (ours) 20.42 0.9181 0.02

Comparison with State-of-the-art SISR Methods. The proposed FEQE
is compared with recent state-of-the-art SISR methods including SRCNN [1]
and VDSR [21], which are conducive for mobile devices. The PSNR, SSIM, and
PI results of referred methods are obtained from source codes provided by the
authors. For fair processing-time comparison, we implement and measure all
the network architectures using the same hardware and Tensorflow deep learn-
ing framework. Table 2 summaries the results of the considered methods over 4
benchmark datasets. The proposed FEQE-P archives better overall PSNR and
SSIM meanwhile FEQE outperforms the others in terms of perceptual qual-
ity. Here, the computational complexities and running time of the considered
methods are reported in Table 3. The processing time is averaged over 100 HD-
resolution (1280 × 720p) images. The proposed FEQE is the fastest since most
of the computation is performed in the low-resolution feature space. In partic-
ular, FEQE is 16 times faster than VDSR while achieving better quantitative
performance. The proposed FEQE is also visually compared to the others. As
shown in Figure 7, the proposed methods provides more plausible visualization
with sharper edges and textures.

4.2 Image Enhancement

Training details. We demonstrate that the proposed FEQE is also conducive
for image enhancement. In this task, the DPED dataset [2] is used for training
and testing. The low- and high-quality images are taken from a iphone 3GS and
Canon 70D DSLR, respectively. The provided training images are in patches of
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Fig. 9. Qualitative comparison of FEQE with other image enhancement methods

100×100. The considered quality metrics are PSNR and SSIM on RGB channels.
The instance normalization layers are injected into the residual blocks, and the
number of the residual blocks is changed to 14. The other training procedures
are similar to those of the super-resolution task.

Effectiveness of Instance Normalization. In image enhancement, the con-
trasts usually vary among low- to high-quality mappings, which should be ad-
dressed using Instance Normalization layers. Figure 8 show that without Instance
Normalization, the predicted image exhibits unpleasing visualization for the un-
wanted color spillages. When the contrasts are normalized the enhanced image
is much more plausible looking and no color spillages are observed.

Comparison with State-of-the-art methods. The proposed FEQE is com-
pared with recent state-of-the-art methods including SRCNN [1], VDSR [21],
and DPED [2]. Although SRCNN and VDSR are originally SISR methods, they
are related to end-to-end image-to-image mapping, which is relevant for image
enhancement. We re-implemented SRCNN and VDSR and train the network
with our loss function. The experimental results of DPED method are repro-
duced from publicly available source codes provided by the authors. Table 4
shows that the proposed FEQE not only achieves better performance in terms
of PSNR but also is the fastest method. The qualitative results are illustrated
in Figure 9. Here, SRCNN and VDSR expose limitations in enhancing image
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quality for unpleasing color spillages. Our proposed FEQE are competitive with
DPED and exhibits significant improvement in terms of brightness and vivid
colors compare to the other methods.

4.3 PIRM 2018 Challenge

The Perceptual Image Restoration and Manipulation(PIRM) 2018 challenge
aims to produce images that are visually appealing to human observers. The au-
thors participated in the Perceptual Image Enhancement on Smartphones chal-
lenge which requires light, fast, and efficient solutions. The challenge composes
of two conventional computer vision tasks: image super-resolution and image
enhancement. The evaluation metric is based on PSNR, multi-scale SSIM, and
processing time of the solution (in subscript s) and the baseline (in subscript b)
as follows:

Score = α(PSNRs − PSNRb) + β(SSIMs − SSIMb) + γmin

(

4,
Timeb
Times

)

. (7)

Here, α, β and γ are the trade-off parameters. There are three evaluation scores
corresponding to three combinations of trade-off parameters. Score A is giving
preference to the solution with the highest fidelity (PSNR), score B is aimed at
the solution providing the best visual results (SSIM), and score C is targeted at
the best balance between the speed and quantitative performance. The details
are provided in [50]. Table 5 summaries the challenge results for the image super-
resolution tasks. The proposed method wins the first place for achieving the best
overall score.

Table 5. Comparison of the proposed FEQE with other top-ranking methods in the
PIRM 2018 super-resolution challenge on mobile devices. RED indicates the best scores.

Method
PSNR
(dB)

SSIM
CPU
(ms)

GPU
(ms)

Razer Phone
(ms)

Score A Score B Score C

FEQE (ours) 28.21 0.9636 701 48 936 13.21 15.15 14.14

Method 1 28.14 0.963 343 34 812 12.86 14.83 13.87

Method 2 28.19 0.9633 773 112 1101 13.08 15.02 14.04

Method 3 28.13 0.9636 767 70 1198 12.88 15.05 13.97

Method 4 28.13 0.9632 654 56 1414 12.84 14.92 13.91

In the image enhancement task, we used super-resolution-based loss function
and instance normalization without applying heavily-optimized techniques for
image enhancement. Although our method exposed some limitations in quali-
tative results compared to the competitors, our quantitative results is in top-
ranking teams and FEQE is the fastest network measured on smartphones.
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Fig. 10. Limitation of FEQE in challenging examples of image super-resolution (first
row) and image enhancement (second row).

4.4 Limitation

Since the proposed FEQE is designed under the resource constrain of mobile
devices, its limitation on challenging samples is inevitable. The limitation is
visually presented in Figure 10. In image super-resolution, FEQE introduces
antifacts for difficulties of distinguishing cross or vertical line patterns in bicubic
input. In image enhancement, since the input is in poor light condition, FEQE
fails to enhance vivid colors.

5 Conclusion

A Fast and Efficient image Quality Enhancement referred to as FEQE for im-
age super-resolution and enhancement on mobile devices is introduced. To ac-
celerate the inference time, the proposed FEQE performs most of the compu-
tational operations in a low-resolution space. The low-resolution features are
obtained by the proposed desubpixel which provides an effective way to down-
sample the high-resolution images. In desubpixel, the spatial features are sys-
tematically rearranged into channels, keeping the feature values intact, hence
providing sufficient information for the following convolutional layers. To im-
prove the fidelity of the reconstruction, convolutional architecture is designed to
be deep with small channel-depth. Experimental results on standard benchmark
datasets show significant achievements in terms of image quality and running
time of the proposed FEQE over recent state-of-the-art image super-resolution
and enhancement methods.
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