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Abstract. Labeled training images of high quality are required for de-
veloping well-working analysis pipelines. This is, of course, also true for
biological image data, where such labels are usually hard to get. We dis-
tinguish human labels (gold corpora) and labels generated by computer
algorithms (silver corpora). A naturally arising problem is to merge mul-
tiple corpora into larger bodies of labeled training datasets. While fusion
of labels in static images is already an established field, dealing with
labels in time-lapse image data remains to be explored. Obtaining a
gold corpus for segmentation is usually very time-consuming and hence
expensive. For this reason, gold corpora for object tracking often use
object detection markers instead of dense segmentations. If dense seg-
mentations of tracked objects are desired later on, an automatic merge
of the detection-based gold corpus with (silver) corpora of the individual
time points for segmentation will be necessary. Here we present such an
automatic merging system and demonstrate its utility on corpora from
the Cell Tracking Challenge. We additionally release all label fusion al-
gorithms as freely available and open plugins for Fiji®.

Keywords: Label fusion image annotation segmentation labels track-
ing labels

1 Introduction

Reliably obtaining high quality segmentation results is, in general, difficult. On
biological microscopy data it is common to have segmentation results from mul-
tiple sources — either human annotations or automatic segmentations. Multiple
solutions have been proposed to merge labels from multiple sources into one
consensus labeling [1-3].
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The widespread use of deep learning [4] across many bioimage analysis and
computer vision tasks has impelled both communities to establish various pub-
licly available repositories of annotated image data for training as well as ob-
jective benchmarking of the developed algorithms. Whereas fusion of labels in
static images is by now common practice, dealing with labels in time-lapse image
data is largely unexplored. This is particularly true in cell tracking applications
for which typically no complete gold corpora exist for dense segmentation [5].
Additionally, the few existing gold corpora for cell tracking make use of simpli-
fied detection markers instead of complete dense segmentations [6-8]. In order
to recover proper segmentation labels of all tracked cells, an automatic solution
to merge a simplified gold tracking corpus with dense segmentation corpora for
the individual time points is needed.

In this paper, we address the problem of obtaining dense segmentation and
tracking results for multidimensional time-lapse light microscopy image data
from partial segmentations and detection-based tracking annotations. For a given
video, a simplified gold tracking corpus is obtained with a unique detection
label for all occurrences of the same cell. Next, silver segmentation corpora are
generated for each frame by a set of automatic segmentation methods. This
results in the production of image sequences that contain ideally similar but
still inconsistent segmentation masks. Finally, we merge those sequences to form
a single silver segmentation corpus per frame and merge it with a detection
based tracking corpus driven by gold tracking markers to generate a complete
and dense tracking corpus. In summary, we present a fully automatic approach
to establish a combined silver segmentation and tracking corpus from multiple
automatic segmentation results and a detection based gold tracking corpus.

2 Proposed Method

The proposed method follows a majority or weighted majority voting scheme.
A flowchart showcasing the proposed method can be found in Figure 1. The re-
quired inputs are (¢) expert annotated tracking detection markers (gold tracking
corpus). Such markers can either be single pixels or simple objects, like small cir-
cles, and (i¢) dense segmentations generated by automated segmentation routines
(silver segmentation corpora). During merging of these resources, each simpli-
fied gold tracking marker at each time-point will consider all dense segmentation
masks that cover more than 50% of it as in [9]. The dense segmentation masks
that fail to cover more than 50% of any simplified gold tracking marker are dis-
carded. Note that for each simplified gold tracking marker, there can exist at
most one such segmentation mask. Consequently, a cumulative gray-scale mask
with counts of how many times an image element was observed in the consid-
ered masks is computed. This fused mask is thresholded and labeled according
to the corresponding gold marker label. Results are put into an output image
that accumulates these relabeled dense segmentations. Note that these relabeled
segmentation masks can overlap or consist of unconnected components. We are
simply removing overlapping areas. Furthermore, if the relabeled segmentation
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mask size is reduced by more than 10%, it is removed entirely to prevent from
spurious objects. Finally, if the relabeled segmentation masks consist of uncon-
nected components (i.e. isolated islands), these components are also removed
and only the largest component is kept. The flow of the proposed merging is

illustrated in Figure 2 and its pseudocode can be found in Algorithm 1.

INPUTS: Foreach subset (of size L) of M segmentation results, where 0<L<=M
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Fig. 1. The flowchart illustrating the proposed merging of a gold tracking corpus with
dense silver segmentation corpora.

The silver dense segmentation corpus was created using a traditional majority
voting scheme with a threshold value of 2/3 of the number of input segmentation
results. The fused silver segmentation and gold tracking corpora allowed us to
calculate various spatio-temporal characteristics (e.g., the average cell overlap
due to its movement between consecutive images) of the real videos. The pseudo-
code of this algorithm is provided in Algorithm 1.

In order to obtain the best possible dense silver corpus, this method is applied
to all possible combinations of available segmentation results. For N segmenta-
tion results, 2V —1 different non-empty input sets for merging are processed. Each
merging result is compared to the dense gold segmentation corpus in terms of
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Fig. 2. llustration of the proposed method with sample inputs from PhC-C2DH-U373
dataset. (A)-(C): Segmentation results from different sources, (D): Fused masks for
each marker before thresholding, (E): Fused masks after thresholding, (F): Expanded
tracking markers after removing overlaps and (G): Final expanded markers after re-
moving unconnected components for each marker
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SEG accuracy measure introduced in [7]. The input combination that produces
the highest SEG score is taken as the input set of the dense silver segmentation
corpus. The pseudo-code of this algorithm is given in Algorithm 2.

It is important to note that these algorithms are fully automated and require
no subsequent manual refinement or checking. Missing objects with respect to
simplified gold tracking ground truth are not manually inserted. Therefore, the
number of objects in the dense silver segmentation corpus can be lower than the
number of objects in the simplified gold tracking corpus.

Algorithm 1: Merge_Segmentation_and_Tracking-Labels

Inputs:Number of frames in the processed 2D or 3D video: N
Number of available segmentation approaches: M
Images containing simplified gold tracking labels
(e.g., circles) T(i), i = 1...N
Images with temporally inconsistent segmentation labels
S(i,j), i=1...N, j=1...M
Minimal expected size of an object in pixels/voxels V
Output: Images with temporally consistent merged segmentation
and tracking labels R(i), i = 1...N
for i = 1 to Ndo
R(i) = zero-initialized image of size like T(i)
K = number of labels in T(i)
t = majority voting threshold
for k = 1 to Kdo
A = zero-initialized image of size like T(i)
for j =1 to Mdo
if some object in S(i,j) overlaps >50% of k-th object in
T(i) then
add the mask of this object (add 1 to all pixels within
this mask) to A
end for
B = binary image obtained by thresholding A with a threshold t
delete all connected components in B that do not overlap with
k-th object in T(i)
if object in B overlaps with some object in R(i) then
remove overlapping part in both B and R(i)
if the object reduction in B was >10% then B = zero image
if the object reduction in R(i) was >10% then
remove this object in R(i)
add object from B (if any) into R(i) with label k
end for
remove all unconnected object components in R(i) whose size is
smaller than V
end for
return R
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Algorithm 2: Find_Optimal_Combination_of-Segmentation_Approaches

Input: The same as in Algorithm 1 plus gold segmentation labels
for selected frames or selected objects only G(i), i = 1...N,
where G(i) can be empty or incomplete for some frames
Output: The same as in Algorithm 1 but for the optimal subset
of segmentation approaches
SEGpest = 0
for each non-empty subset Z of 1...M do
R = result of Algorithm 1 run with input segmentation
approaches restricted to set Z (the input parameter M will be
equal to [Z1)
SEG = average Jaccard index for all objects in G compared to
corresponding objects in R
if SEG > SEGpes: then SEGpes: = SEG, Rpest = R
end for
return Rpcs

3 Experimental Results

In the experiments, simulated datasets are used due to the availability of com-
plete and dense gold segmentation and tracking corpora. Experiments are carried
out using two time-lapse videos of Fluo-N2DH-SIM+ training dataset from Cell
Tracking Challenge [8], one of the few resources for which a large simplified gold
tracking corpus is available. For both videos, segmentation results of 13 different
algorithms from Cell Tracking Challenge are available. In the experiments, six
segmentation results that perform above a certain threshold are used for merg-
ing. First video is a sequence of 65 images and the second video is a sequence
of 150 images. Therefore, segmentation markers are merged using 26 — 1 (empty
set is excluded) different combinations of inputs to get the best possible dense
silver segmentation corpus and compared to the gold segmentation corpus in
this case of simulated datasets with complete and dense ground truth. The com-
bination that gives the highest SEG score is selected as the input set of dense
silver segmentation corpus. For the first video, merging outputs that produce
the highest SEG score is obtained using four segmentation results; HD-Hau-GE,
KTH-SE (1), FR-Ro-GE and LEID-NL. While on the second video, three seg-
mentation results, KTH-SE (1), PAST-FR and FR-Ro-GE, produce the optimal
merging outputs in terms of SEG score over reference objects. Experimental re-
sults obtained on the first video and the second video are presented in Table 1.
Computation time was 12 hours for the first video and 21 hours for the second
video for 63 different combinations of six available segmentation results. Exper-
iments are carried out on a Linux SMP Debian 4.9.65 machine that runs on
Intel(R) Core(TM) i7 CPU 920 with 12 GB RAM.
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Tracking markers HD-Hau-GE KTH-SE (1) FR-Ro-GE LEID-NL

Original image Segmentation result produced Segmentation ground truth

by the proposed method

Fig. 3. A sample set of gold tracking markers, segmentation sources that achieve the
best possible merging result, (visually enhanced) original image, segmentation result
produced by the proposed method and the segmentation ground truth of the 41-st
frame of the first video. The segmentation results are shown in blue and are overlaid
with contours of the ground truth to facilitate the comparison. Yellow arrows point on
the same nuclei that is under-/over-segmented in the results.

Table 1. SEG scores for segmented objects in the first video (second row) and in the
second video (third row). First column denotes the merging outputs that are obtained
using results of HD-Hau-GE, KTH-SE (1), FR-Ro-GE and LEID-NL for the first video
and using results of KTH-SE (1), PAST-FR and FR-Ro-GE for the second video. Rest
of the columns present individual algorithm results.

Merged |HD-Hau-GE|KTH-SE (1)|UZH-CH|PAST-FR|FR-Ro-GE|LEID-NL
0.873 |0.798 0.865 0.807 0.844 0.848 0.864
0.657 [0.579 0.657 0.574 0.629 0.640 0.605

It is shown in Table 1 that on the first video, our merging tool outperforms
segmentation results of individual algorithms in terms of SEG score. This im-
provement can be observed in Figure 3. On the second video (Table 1), merged
segmentation result produces the same SEG score as KTH-SE (1) does. The
SEG score is known to permit various sources of segmentation errors that, how-
ever, lead to the same coefficient value in the case of the second video (Table
1). The number of not expanded markers are more in KTH-SE (1) segmenta-
tion (203 markers due to not found, 96 markers due to unresolved collision; 299
markers in total) than in the merged segmentation (128 markers due to not
found, 163 markers due to unresolved collision; 291 markers in total). More-
over, the merged segmentation contains more expanded markers (3072 markers)
than KTH-SE (1) segmentation does (3064 markers). Therefore, the merged seg-
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mentation is not identical to the original KTH-SE (1) segmentation despite the
SEG score values are the same. Since the other inputs scored lower SEG score
values, they must be deviating from the segmentation ground truth in more re-
gions than KTH-SE (1) does. We also observed a similar performance on real
datasets. The proposed method is voting-based, suggesting that most of indi-
vidual over-segmentations will be stripped away unless majority supports them.
Similarly, most of individual under-segmentations will be recovered. This leads
to a merged segmentation that is more compact in shape (compare, e.g., top row
with column (E) in Fig. 2), and increases the SEG score. On the other hand,
sometimes majority of input results misses a cell or nuclei largely or completely,
leading to a decrease of the overall SEG score. Similarly, removing overlapping
parts of colliding markers decreases the SEG score while removing unconnected
components (i.e. isolated islands) increases it. Therefore, our tool provides an
increase in the segmentation accuracy for the images, for which removed areas of
unconnected components are larger than overlapping parts of colliding markers.

4 Discussion and Future Directions

We have presented a method for creating large, dense tracking labels by merging
existing corpora of various partial dense segmentations and a detection based
tracking corpus. This method has the potential to save impossible amounts of
manual human data annotation time when creating dense training data for mi-
croscopy datasets. We demonstrated the proposed method on datasets from the
Cell Tracking Challenge [8], showing that it generates high quality labels even on
large bodies of data. The fused silver segmentation and simplified gold tracking
corpora allowed us to calculate more precise and more complete spatio-temporal
characteristics. Such characteristics cannot often be computed from pure track-
ing results due to simplified markers. Additionally, the merged labels can now
be used to train various (end-to-end) processing routines.

In our experiments, simulated datasets are used due to the availability of full
segmentation results for all frames. Additionally, this allowed us to evaluate the
performance of the proposed method more accurately. Each possible combina-
tion of available segmentation sources is used as the input set in order to obtain
the best possible merging result. Therefore, the proposed method is capable
of producing more accurate segmentation results than individual segmentation
sources. We also showed that the proposed method improves the quality of the
final segmentation during merging in terms of SEG accuracy measure. While
the proposed method may not always provide more accurate segmentation re-
sults than any individual segmentation source does, it ideally provides the most
complete tracking result compared to any single silver segmentation corpus.

Future extensions can make use of more involved merging schemes such as
STAPLE [1], SIMPLE [2], or image-based alternatives [10,11]. This could fur-
ther improve the quality of merged segmentation labels. A comprehensive study
using a large collection of CTC participant results and all CTC datasets will be
performed.
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