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Abstract. In this paper we propose to learn a multimodal image and text embed-
ding from Web and Social Media data, aiming to leverage the semantic knowl-
edge learnt in the text domain and transfer it to a visual model for semantic image
retrieval. We demonstrate that the pipeline can learn from images with associated
text without supervision and perform a thourough analysis of five different text
embeddings in three different benchmarks. We show that the embeddings learnt
with Web and Social Media data have competitive performances over supervised
methods in the text based image retrieval task, and we clearly outperform state
of the art in the MIRFlickr dataset when training in the target data. Further we
demonstrate how semantic multimodal image retrieval can be performed using
the learnt embeddings, going beyond classical instance-level retrieval problems.
Finally, we present a new dataset, InstaCities1M, composed by Instagram im-
ages and their associated texts that can be used for fair comparison of image-text
embeddings.

Keywords: self-supervised learning - webly supervised learning - text embed-
dings - multimodal retrieval - multimodal embeddings

1 Introduction

1.1 Why Should We Learn to Learn from Web Data?

Large annotated datasets, powerful hardware and deep learning techniques are allowing
to get outstanding machine learning results. Not only in traditional classification prob-
lems but also in more challenging tasks such as image captioning or language trans-
lation. Deep neural networks allow building pipelines that can learn patterns from any
kind of data with impressive results. One of the bottlenecks of training deep neural net-
works is, though, the availability of properly annotated data, since deep learning tech-
niques are data hungry. Despite the existence of large-scale annotated datasets such as
ImageNet [11], COCO [16] or Places [40] and tools for human annotation such as Ama-
zon Mechanical Turk, the lack of data limits the application of deep learning to specific
problems where it is difficult or economically inviable to get proper annotations.
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A common strategy to overcome this problem is to first train models in generic
datasets as ImageNet and then fine-tune them to other areas using smaller, specific
datasets [36]. But still we depend on the existence of annotated data to train our mod-
els. Another strategy to overcome the insufficiency of data is to use computer graphics
techniques to generate artificial data inexpensively. However, while synthetic data has
proven to be a valuable source of training data for many applications such as pedestrian
detection [19], image semantic segmentation [28] and scene text detection and recogni-
tion [26,8], nowadays it is still not easy to generate realistic complex images for some
tasks.

An alternative to these strategies is learning from free existing weakly annotated
multimodal data. Web and Social Media offer an immense amount of images accom-
panied with other information such as the image title, description or date. This data is
noisy and unstructured but it is free and nearly unlimited. Designing algorithms to learn
from Web data is an interesting research area as it would disconnect the deep learning
evolution from the scaling of human-annotated datasets, given the enormous amount of
existing Web and Social Media data.

1.2 How to Learn from Web Data?

In some works, such as in the WebVision Challenge [14], Web data is used to build a
classification dataset: queries are made to search engines using class names and the re-
trieved images are labeled with the querying class. In such a configuration the learning
is limited to some pre-established classes, thus it could not generalize to new classes.
While working with image labels is very convenient for training traditional visual mod-
els, the semantics in such a discrete space is very limited in comparison with the rich-
ness of human language expressiveness when describing an image. Instead we define
here a scenario where, by exploiting distributional semantics in a given text corpus, we
can learn from every word associated to an image. As illustrated in Figure 1, by leverag-
ing the richer semantics encoded in the learnt embedding space, we can infer previously
unseen concepts even though they might not be explicitly present in the training set.

The noisy and unstructured text associated to Web images provides information
about the image content that we can use to learn visual features. A strategy to do that
is to embed the multimodal data (images and text) in the same vectorial space. In this
work we represent text using five different state of the art methods and eventually embed
images in the learn semantic space by means of a regression CNN. We compare the
performance of the different text space configurations under a text based image retrieval
task.

2 Related Work

Multimodal image and text embeddings have been lately a very active research area.
The possibilities of learning together from different kinds of data have motivated this
field of study, where both general and applied research has been done. DeViSE [22]
proposes a pipeline that, instead of learning to predict ImageNet classes, it learns to
infer the Word2Vec [21] representations of their labels. The result is a model that makes
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Fig. 1. Top-ranked results of combined text ©anima
queries by our semantic image retrieval model.
The learnt joint image-text embedding permits
to learn a rich semantic manifold even for  Fig, 2. First retrieved images for multimodal
previously unseen concepts even though they  queries (concepts are added or removed to bias
might not be explicitly present in the training  the results) with Word2Vec on WebVision.
set.

semantically relevant predictions even when it makes errors, and generalizes to classes
outside of its labeled training set. Gordo & Larlus [7] use captions associated to images
to learn a common embedding space for images and text through which they perform
semantic image retrieval. They use a #f-idf based BoW representation over the image
captions as a semantic similarity measure between images and they train a CNN to
minimize a margin loss based on the distances of triplets of query-similar-dissimilar
images. Gomez et al. [5] use LDA [1] to extract topic probabilities from a bunch of
Wikipedia articles and train a CNN to embed its associated images in the same topic
space. Wang et al. [32] propose a method to learn a joint embedding of images and text
for image-to-text and text-to-image retrieval, by training a neural net to embed in the
same space Word2Vec [21] text representations and CNN extracted features.

Other than semantic retrieval, joint image-text embeddings have also been used in
more specific applications. Patel ef al. [23] use LDA [1] to learn a joint image-text em-
bedding and generate contextualized lexicons for images using only visual information.
Gordo et al. [6] embed word images in a semantic space relying in the graph taxonomy
provided by WordNet [27] to perform text recognition. In a more specific application,
Salvador et al. [29] propose a joint embedding of food images and its recipes to iden-
tify ingredients, using Word2Vec [21] and LSTM representations to encode ingredient
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names and cooking instructions and a CNN to extract visual features from the associ-
ated images.

The robustness against noisy data has also been addressed by the community, though
usually in an implicit way. Patrini et al. [24] address the problem of training a deep neu-
ral network with label noise with a loss correction approach and Xiau et al. [33] propose
a method to train a network with a limited number of clean labels and millions of noisy
labels. Fu et al. [4] propose an image tagging method robust to noisy training data and
Xu et al. [34] address social image tagging correction and completion. Zhang et al. [20]
show how label noise affects the CNN training process and its generalization error.

2.1 Contributions

The work presented here brings in a performance comparison between five state of the
art text embeddings in multimodal learning, showing results in three different datasets.
Furthermore it proves that multimodal learning can be applied to Web and Social Media
data achieving competitive results in text-based image retrieval compared to pipelines
trained with human annotated data. Finally, a new dataset formed by Instagram images
and its associated text is presented: InstaCities1M.

3 Multimodal Text-Image Embedding

One of the objectives of this work is to serve as a fair comparative of different text
embeddings methods when learning from Web and Social Media data. Therefore we
design a pipeline to test the different methods under the same conditions, where the text
embedding is a module that can be replaced by any text representation.

The proposed pipeline is as follows: First, we train the text embedding model on
a dataset composed by pairs of images and correlated texts (I, z). Second, we use the
text embedding model to generate vectorial representations of those texts. Given a text
instance z, we denote its embedding by ¢(z) € R?. Third, we train a CNN to regress
those text embeddings directly from the correlated images. Given an image I, its repre-
sentation in the embedding space is denoted by ¢/(I) € R%. Thereby the CNN learns to
embed images in the vectorial space defined by the text embedding model. The trained
CNN model is used to generate visual embeddings for the test set images. Figure 3
shows a diagram of the visual embedding training pipeline and the retrieval procedure.

In the image retrieval stage the vectorial representation in the joint text-image space
of the querying text is computed using the text embedding model. Image queries can
also be handled by using the visual embedding model instead of the text embedding
model to generate the query representation. Furthermore, we can generate complex
queries combining different query representations applying algebra in the joint text-
image space. To retrieve the most semantically similar image I to a query x4, we
compute the cosine similarity of its vectorial representation ¢(z,) with the visual em-
beddings of the test set images (I ), and retrieve the nearest image in the joint text-

image space:
 {9(xq), ¥(Ir))
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State of the art text embedding methods trained on large text corpus are very good
generating representations of text in a vector space where semantically similar con-
cepts fall close to each other. The proposed pipeline leverages the semantic structure of
those text embedding spaces training a visual embedding model that generates vecto-
rial representations of images in the same space, mapping semantically similar images
close to each other, and also close to texts correlated to the image content. Note that
the proposed joint text-image embedding can be extended to other tasks besides image
retrieval, such as image annotation, tagging or captioning.

Training
Visual v [ W
embedding g:g
~ “old car”
Text TGT .
“ » Text . Semantic
old car embedding “p(x) representation
“old car” Retrieval
L
Text o)
embedding

Fig. 3. Pipeline of the visual embedding model training and the image retrieval by text.

3.1 Visual Embedding

A CNN is trained to regress text embeddings from the correlated images minimizing
a sigmoid cross-entropy loss. This loss is used to minimize distances between the text
and image embeddings. Let {(I,,, Z,,) }n=1.n be a batch of image-text pairs. If o(-) is
the component-wise sigmoid function, we denote p,, = o(¢(x,,)) and p,, = (¥ (1)),
and let the loss be:

N
L=-%"[pulogpn + (1 - pn)log(l —pn)], ©))
n=1

where the sum’s inner expression is averaged over all vector components. The GoogleNet
architecture [30] is used, customizing the last layer to regress a vector of the same di-
mensionality as the text embedding. We train with a Stochastic Gradient Descent op-
timizer with a learning rate of 0.001, multiplied by 0.1 every 100,000 iterations, and
a momentum of 0.9. The batch size is set to 120 and random cropping and mirroring
are used as online data augmentation. With these settings the CNN trainings converge
around 300K-500K iterations. We use the Caffe [10] framework and initialize with the
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ImageNet [11] trained model to make the training faster. Notice that, despite initializing
with a model trained with human-annotated data, this does not denote a dependence on
annotated data, since the resulting model can generalize to much more concepts than
the ImageNet classes. We trained one model from scratch obtaining similar results, al-
though more training iterations were needed.

3.2 Text Embeddings

Text vectorization methods are diverse in terms of architecture and the text structure
they are designed to deal with. Some methods are oriented to vectorize individual
words and others to vectorize full texts or paragraphs. In this work we consider the
top-performing text embeddings and test them in our pipeline to evaluate their perfor-
mance when learning from Web and Social Media data. Here we explain briefly the
main characteristics of each text embedding method used.

LDA [1]: Latent Dirichlet Allocation learns latent topics from a collection of text doc-
uments and maps words to a vector of probabilities of those topics. It can describe a
document by assigning topic distributions to them, which in turn have word distribu-
tions assigned. An advantage of this method is that it gives interpretable topics.

Word2Vec [21]: Using large amounts of unannotated plain text, Word2Vec learns re-
lationships between words automatically using a feed-forward neural network. It builds
distributed semantic representations of words using the context of them considering
both words before and after the target word.

FastText [2]: It is an extension of Word2Vec which treats each word as composed of
character ngrams, learning representations for ngrams instead of words. The vector for
a word is made of the sum of its character n grams, so it can generate embeddings for
out of vocabulary words.

Doc2Vec [12]: Extends the Word2Vec idea to documents. Instead of learning feature
representations for words, it learns them for sentences or documents.

GloVe [25]: It is a count-based model. It learns the vectors by essentially doing di-
mensionality reduction on the co-occurrence counts matrix. Training is performed on
aggregated global word-word co-occurrence statistics from a corpus.

To the best of our knowledge, this is the first time these text embeddings are trained
from scratch on the same corpus and evaluated under the image retrieval by text task.
We used Gensim? implementations of LDA, Word2Vec, FastText and Doc2Vec and the

3 http://radimrehurek.com/gensim
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GloVe implementation by Maciej Kula*. While LDA and Doc2 Vec can generate embed-
dings for documents, Word2Vec, GloVe and FastText only generate word embeddings.
To get documents embeddings from these methods, we consider two standard strate-
gies: First, computing the document embedding as the mean embedding of its words.
Second, computing a #f-idf weighted mean of the words in the document. For all em-
beddings a dimensionality of 400 has been used. The value has been selected because
is the one used in the Doc2Vec paper [12], which compares Doc2Vec with other text
embedding methods, and it is enough to get optimum performances of Word2Vec, Fast-
Text and GloVe, as [21,2,25] show respectively. For LDA a dimensionality of 200 has
also been considered.

4 Experiments

4.1 Benchmarks

InstaCitiesIM A dataset formed by Instagram images associated with one of the 10
most populated English speaking cities all over the world (in the images captions one
of this city names appears). It contains 100K images for each city, which makes a total
of 1M images, split in 800K training images, S0K validation images and 150K test
images. The interest of this dataset is that is formed by recent Social Media data. The
text associated with the images is the description and the hashtags written by the photo
up-loaders, so it is the kind of free available data that would be very interesting to be
able to learn from. The InstaCities1M dataset is available on https://gombru.github.io/
2018/08/01/InstaCities I M/.

WebVision [15] It contains more than 2.4 million images crawled from the Flickr
Website and Google Images search. The same 1,000 concepts as the ILSVRC 2012
dataset [11] are used for querying images. The textual information accompanying those
images (caption, user tags and description) is provided. The validation set, which is
used as test in this work, contains 50K images.

MIRFlickr [9] It contains 25,000 images collected from Flickr, annotated using 24
predefined semantic concepts. 14 of those concepts are divided in two categories: 1)
strong correlation concepts and 2) weak correlation concepts. The correlation between
an image and a concept is strong if the concept appears in the image predominantly.
For differentiation, we denote strong correlation concepts by a suffix “*”. Finally, con-
sidering strong and weak concepts separately, we get 38 concepts in total. All images
in the dataset are annotated by at least one of those concepts. Additionally, all im-
ages have associated tags collected from Flickr. Following the experimental protocol in
[17,35,13,18] tags that appear less than 20 times are first removed and then instances
without tags or annotations are removed.

* http://github.com/maciejkula/glove-python
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4.2 Retrieval on InstaCities1M and Web Vision Datasets

Experiment Setup To evaluate the learnt joint embeddings, we define a set of textual
queries and check visually if the TOP-5 retrieved images contain the querying concept.
We define 24 different queries. Half of them are single word queries and the other half
two word queries. They have been selected to cover a wide area of semantic concepts
that are usually present in Web and Social Media data. Both simple and complex queries
are divided in four different categories: Urban, weather, food and people. The simple
queries are: Car, skyline, bike; sunrise, snow, rain; ice-cream, cake, pizza; woman, man,
kid. The complex queries are: Yellow + car, skyline + night, bike + park; sunrise +
beach; snow + ski; rain + umbrella; ice-cream + beach, chocolate + cake; pizza + wine;
woman + bag, man + boat, kid + dog. For complex queries, only images containing
both querying concepts are considered correct.

Table 2. Performance on transfer learning.
First column shows the mean P@5 for all
the queries, second for the simple queries and
third for complex queries.

Table 1. Performance on InstaCities1M and
Web Vision. First column shows the mean P@5
for all the queries, second for the simple
queries and third for complex queries.

Text embedding [InstaCitiesIM| Web Vision ing | Train: WebVision Train: InstaCities
Queries : Al S C|Al S C Texzmbfddmg T:lslt’ I;‘s‘aCiges TAelslt: V:ebVis? L
ueries
LDA 200 0.400.73 0.07)0.11 0.18 0.03 LDA200 [0.14025 0.03 [033055 0.12
LDA 400 0.37 0.68 0.05(0.14 0.18 0.10 IDAF00 1017025 008 024039 0.10
Word2Vec m(?an 0.46 0.71 0.20 |0.37 0.57 0.17 Word2Vec mean|0.41 0.63 0.18 1033052 0.15
‘Word2Vec tf-idf [0.41 0.63 0.18 [0.41 0.58 0.23 Word2Vec tf-idf|0.42 0.57 0.27 0.320.50 0.13
Doc2Vec 022 0.25 0.180.22 0.17 0.27 Doc2Vec  [0.270.40 0.15 [0.240.33 0.15
GloVe 0.41 0.72 0.10{0.36 0.60 0.12 GloVe 0.360.58 0.15 [0.290.53 0.05
GloVe tf-idf 0.47 0.82 0.12]0.39 0.57 0.22 GloVe tf-idf 039057 022 [0.510.75 0.27
FastText tf-idf |0.31 0.50 0.12{0.37 0.60 0.13 FastText tf-idf 0.39 0.57 022 [0.18 0.33 0.03

Fig.4. First retrieved images for city re-
lated complex queries with Word2Vec on In-
staCites1 M.

wild

happy

Fig.5. First
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non-object queries with Word2Vec on In-
staCites1 M.
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for text
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Results and Conclusions Tables 1 and 2 show the mean Precision at 5 for InstaCi-
tiesIM and WebVision datasets and transfer learning between those datasets. To com-
pute transfer learning results, we train the model with one dataset and test with the other.
Figures 1 and 4 show the first retrieved images for some complex textual queries. Figure
5 shows results for non-object queries, proving that our pipeline works beyond tradi-
tional instance-level retrieval. Figure 2 shows that retrieval also works with multimodal
queries combining an image and text.

For complex queries, where we demand two concepts to appear in the retrieved
images, we obtain good results for those queries where the concepts tend to appear
together. For instance, we generally retrieve correct images for “skyline + night” and
for “bike + park”, but we do not retrieve images for “dog + kid”. When failing with
this complex queries, usually images where only one of the two querying concepts
appears are retrieved. Figure 6 shows that in some cases images corresponding to se-
mantic concepts between the two querying concepts are retrieved. That proves that the
common embedding space that has been learnt has a semantic structure. The perfor-
mance is generally better in InstaCities1M than in WebVision. The reason is that the
queries are closer to the kind of images people tend to post in Instagram than to the
ImageNet classes. However, the results on transfer learning show that WebVision is a
better dataset to train than InstaCities]1 M. Results show that all the tested text embed-
dings methods work quite well for simple queries. Though, LDA fails when is trained in
WebVision. That is because LDA learns latent topics with semantic sense from the train-
ing data. Every WebVision image is associated to one of the 1,000 ImageNet classes,
which influences a lot the topics learning. As a result, the embedding fails when the
queries are not related to those classes. The top performing methods are GloVe when
training with InstaCities1M and Word2Vec when training with WebVision, but the dif-
ference between their performance is small. FastText achieves a good performance on
WebVision but a bad performance on InstaCitiesIM compared to the other methods.
An explanation is that, while Social Media data contains more colloquial vocabulary,
WebVision contains domain specific and diverse vocabulary, and since FastText learns
representations for character ngrams, is more suitable to learn representations from cor-
pus that are morphologically rich. Doc2Vec does not work well in any database. That
is because it is oriented to deal with larger texts than the ones we find accompanying
images in Web and Social Media. For word embedding methods Word2Vec and GloVe,
the results computing the text representation as the mean or as the #f-idf weighted mean
of the words embeddings are similar.

Error Analysis Remarkable sources of errors are listed and explained in this section.

Visual Features Confusion: Errors due to the confusion between visually similar ob-
jects. For instance retrieving images of a quiche when querying “pizza”. Those errors
could be avoided using more data and a higher dimensional representations, since the
problem is the lack of training data to learn visual features that generalize to unseen
samples.
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Errors from the Dataset Statistics: An important source of errors is due to dataset statis-
tics. As an example, the WebVision dataset contains a class which is “snow leopard”
and it has many images of that concept. The word “snow” appears frequently in the im-
ages correlated descriptions, so the net learns to embed together the word “snow” and
the visual features of a “snow leopard”. There are many more images of “snow leopard”
than of “snow”, therefore, when we query “snow” we get snow leopard images. Figure
7 shows this error and how we can use complex multimodal queries to bias the results.

Words with Different Meanings or Uses: Words with different meanings or words that
people use in different scenarios introduce unexpected behaviors. For instance when we
query “woman + bag” in the InstaCities1M dataset we usually retrieve images of pink
bags. The reason is that people tend to write "woman” in an image caption when pink
stuff appears. Those are considered errors in our evaluation, but inferring which images
people relate with certain words in Social Media can be a very interesting research.

snow.
~leopard - plow

Fig. 6. First retrieved images for simple (left

and right columns) and complex weighted  Fig, 7. First retrieved images for text queries

queries with Word2Vec on InstaCites IM. using Word2Vec on WebVision. Concepts are
removed to bias the results.

4.3 Retrieval in the MIRFlickr Dataset

To compare the performance of our pipeline to other image retrieval by text systems
we use the MIRFlickr dataset, which is typically used to train and evaluate image re-
trieval systems. The objective is to prove the quality of the multimodal embeddings
learnt solely with Web data comparing them to supervised methods.
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Table 3. MAP on the image by text retrieval  Table 5. AP scores for 38 semantic concepts

task on MIRFlickr as defined in [35,18]. and MAP on MIRFlickr. Blue numbers com-
pare our method trained with InstaCities and
Method Train map other methods trained with the target dataset.
LDA 200 InstaCites1M |0.736
LDA 400 WebVision  [0.627 Method || Cl0VeMMSHL|SCM||  GloVe
Word2 Vec tf-idf| InstaCites 1M |0.720 thdf| [31] | [37) ) ¢f-idf
. Train MIRFlickr InstaCities
Word2Vec tf-idf| WebVision 0.738 animals 0.7751 0.382 [0.353 0.707
GloVe tf-idf InstaCites1M |0.756 baby 0.337| 0.126 [0.127|| 0.264
GloVe tf-idf WebVision  |0.737 E?l:iy* g-gzz 811323 8‘?22 gj‘gi
. ) 11 . . . . z
FastText tf-fdf InstaC.lt}eslM 0.677 bird® 0.6031 0178 To.163 0.680
FastText tf-idf |WebVision 0.734 car 0.603] 0297 |0.256 0.450
Word2Vec tf-idf| MIRFlickr 0.867 ;‘“*l g-zgg gfg‘; ggii g-i»;?f
. . emale X ik . .
GloVe tf-idf MIRFUCkr 0.883 female* 0.770 | 0.494 |0.466 0.527
DCH [35] MIRFlickr  |0.813 lake 0.403| 0.194 |0.182] 0.230
LSRH [13] MIRFlickr 0.768 sea 0.720 | 0.469 [0.498| 0.565
CSDH [18] MIRFlickr  0.764 sea® 0.859| 0.242 [0.166|] 0.731
SCPH(17]|MRFick (0735 000 0w 0
SCM [37] MIRFlickr |0.631 clouds  ||0.792] 0.739 |0.698|| 0.613
CMFH [3] MIRFlickr  0.594 clouds* || 0.884| 0.658 [0.598| 0.710
CRH [39] MIRFlickr 0.581 dog 0.800 | 0.195 [0.167|] 0.760
KSH-CV [41] MIRFlickr 0.571 dog* 0.901 | 0.238 0.228 0.865

sky 0.900| 0.817 |0.797 0.809
structures|| 0.850 | 0.741 |0.708 0.703
sunset 0.601| 0.596 |0.563 0.590
transport || 0.650 | 0.394 |0.368 0.287
water 0.759 | 0.545 |0.508 0.555
flower 0.715| 0.433 |0.386 0.645
flower* 0.870 | 0.504 |0.411 0.818

Table 4. MAP on the image by text retrieval
task on MIRFlickr as defined in [38].

food 0.712| 0419 [0.355| 0.683
indoor || 0.806 | 0.677 |0.659| 0.304

Method Train map plant life|| 0.846 | 0.734 |0.703|| 0.564
GloVe tf-idf|InstaCites 1M |0.57 portrait || 0.825| 0.616 [0.524| 0.474
- : portrait* || 0.841| 0.613 |0.520| 0.483

GloVe tf-idf| MIRFlickr _0.73 river 0.436| 0.163 |0.156]] 0304
MML [38] |MIRFlickr |0.63 river® 0.497| 0.134 |0.142] 0.326
InfR [38] |MIRFlickr [0.60 male 0.666 | 0.475 [0.469|| 0.330
SBOW [38] [MIRFlickr 0.59 male* 0.743 | 0.376 (0.341 0.338
: night 0.589 | 0.564 |0.538|| 0.542

SLKL [38] |MIRFlickr |0.55 night* [ 0.804| 0414 0420 0.720
MLKL [38] MIRFlickr ]0.56 people | 0.910] 0.738 [0.715]| 0.640

people* 0.945| 0.677 |0.648 0.658
MAP 0.738 | 0.451 |0.415 0.555
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Experiment Setup We consider three different experiments: 1) Using as queries the
tags accompanying the query images and computing the MAP of all the queries. Here a
retrieved image is considered correct if it shares at least one tag with the query image.
For this experiment, the splits used are 5% queries set and 95% training and retrieval
set, as defined in [35,18]. 2) Using as queries the class names. Here a retrieved image is
considered correct if it is tagged with the query concept. For this experiment, the splits
used are 50% training and 50% retrieval set, as defined in [31]. 3) Same as experiment 1
but using the MIRFlickr train-test split proposed in Zhang et al. [38].

Results and Conclusions Tables 3 and 4 show the results for the experiments 1 and 3
respectively. We appreciate that our pipeline trained with Web and Social Media data in
a multimodal self-supervised fashion achieves competitive results. When trained with
the target dataset, our pipeline outperforms the other methods. Table 5 shows results
for the experiment 2. Our pipeline with the GloVe #f-idf text embedding trained with
InstaCites1M outperforms state of the art methods in most of the classes and in MAP.
If we train with the target dataset, results are improved significantly. Notice that despite
being applied here to the classes and tags existing in MIRFlickr, our pipeline is generic
and has learnt to produce joint image and text embeddings for many more semantic
concepts, as seen in the qualitative examples.

4.4 Comparing the Image and Text Embeddings

Waord2Vec Glove - LDA
o

10 5 Lo = L0 =
R?=0.12 o il R?=0.09 e R?=0.01 . e
P ; . / K

o8

08

imy distance

img distance

Fig. 8. Text embeddings distance (X) vs the images embedding distance (Y) of different random
image pairs for LDA, Word2Vec and GloVe embeddings trained with InstaCities1M. Distances
have been normalized between [0,1]. Points are red if the pair does not share any tag, orange if
it shares 1, light orange if it shares 2, yellow if it shares 3 and green if it shares more. R? is the
coefficient of determination of images and texts distances.

Experiment Setup To evaluate how the CNN has learnt to map images to the text
embedding space and the semantic quality of that space, we perform the following
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experiment: We build random image pairs from the MIRFlickr dataset and we compute
the cosine similarity between both their image and their text embeddings. In Figure 8 we
plot the images embeddings distance vs the text embedding distance of 20,000 random
image pairs. If the CNN has learnt correctly to map images to the text embedding space,
the distances between the embeddings of the images and the texts of a pair should be
similar, and points in the plot should fall around the identity line y = z. Also, if the
learnt space has a semantic structure, both the distance between images embeddings
and the distance between texts embeddings should be smaller for those pairs sharing
more tags: The plot points’ color reflects the number of common tags of the image pair,
so pairs sharing more tags should be closer to the axis origin.

As an example, take a dog image with the tag ”dog”, a cat image with the tag “cat”
and one of a scarab with the tag “’scarab”. If the text embedding has been learnt cor-
rectly, the distance between the projections of dog and scarab tags in the text embedding
space should be bigger than the one between dog and cat tags, but smaller than the one
between other pairs not related at all. If the CNN has correctly learnt to embed the
images of those animals in the text embedding space, the distance between the dog
and the cat image embeddings should be similar than the one between their tags em-
beddings (and the same for any pair). So the point given by the pair should fall in the
identity line. Furthermore, that distance should be nearer to the coordinates origin than
the point given by the dog and scarab pair, which should also fall in the identity line
and nearer to the coordinates origin that another pair that has no relation at all.

Results and Conclusions The plots for both the Word2Vec and the GloVe embeddings
show a similar shape. The resulting blob is elongated along the y = « direction, which
proves that both image and text embeddings tend to provide similar distances for an
image pair. The blob is thiner and closer to the identity line when the distances are
smaller (so when the image pairs are related), which means that the embeddings can
provide a valid distance for semantic concepts that are close enough (dog, cat), but
fails inferring distances between weak related concepts (car, skateboard). The colors
of the points in the plots show that the space learnt has a semantic structure. Points
corresponding to pairs having more tags in common are closer to the coordinates origin
and have smaller distances between the image and the text embedding. From the colors
it can also be deducted that the CNN is good inferring distances for related images pairs:
there are just a few images having more than 3 tags in common with image embedding
distance bigger than 0.6, while there are many images with bigger distances that do not
have tags in common. However, the visual embedding sometimes fails and infers small
distances for image pairs that are not related, as those images pairs having no tags in
common and an image embedding distance below 0.2.

The plot of the LDA embedding shows that the learnt joint embedding is not so good
in terms of the CNN images mapping to the text embedding space nor in terms of the
space semantic structure. The blob does not follow the identity line direction that much
which means that the CNN and the LDA are not inferring similar distances for images
and texts of pairs. The points colors show that the CNN is inferring smaller distances
for more similar image pairs only when the pairs are very related.
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The coefficient of determination R? measures the proportion of the variance in a
dependent variable that is predicted by linear regression and a predictor variable. In this
case, it can be interpreted as a measure of how much image distances can be predicted
from text distances and, therefore, of how well the visual embedding has learnt to map
images to the joint image-text space. It ratifies our plots’ visual inspection proving
that visual embeddings trained with Word2Vec and GloVe representations have learnt a
much more accurate mapping than LDA, and shows that Word2Vec is better in terms of
that mapping.

5 Conclusions

In this work we learn a joint visual and textual embedding using Web and Social Media
data and we benchmark state of the art text embeddings in the image retrieval by text
task, concluding that GloVe and Word2Vec are the best ones for this data, having a sim-
ilar performance and competitive performances over supervised methods in the image
retrieval by text task. We show that our models go beyond instance-level image retrieval
to semantic retrieval and that can handle multiple concepts queries and also multimodal
queries, composed by a visual query and a text modifier to bias the results. We clearly
outperform state of the art in the MIRFlick dataset when training in the target data. The
code used in the project is available on https://github.com/gombru/LearnFromWebData.
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