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Abstract. We propose a ThermalGAN framework for cross-modality
color-thermal person re-identification (ReID). We use a stack of genera-
tive adversarial networks (GAN) to translate a single color probe image
to a multimodal thermal probe set. We use thermal histograms and fea-
ture descriptors as a thermal signature. We collected a large-scale multi-
spectral ThermalWorld dataset for extensive training of our GAN model.
In total the dataset includes 20216 color-thermal image pairs, 516 per-
son ID, and ground truth pixel-level object annotations. We made the
dataset freely available4. We evaluate our framework on the Thermal-
World dataset to show that it delivers robust matching that competes
and surpasses the state-of-the-art in cross-modality color-thermal ReID.
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1 Introduction

Person re-identification (ReID) is of primary importance for tasks such as video
surveillance and photo-tagging. It has been the focus of intense research in re-
cent years. While modern methods provide excellent results during in a well-lit
environment, their performance is not robust without a suitable light source.

Infrared cameras perceive thermal emission that is invariant to the light-
ing conditions. However, challenges of cross-modality color-infrared matching
reduce benefits of night mode infrared cameras. Recently cross-modality color-
to-thermal matching received a lot of scholar attention [37, 35, 52, 51]. Multiple
datasets with infrared images [33, 37, 35, 47] were developed for cross-modality
infrared-to-color person ReID. Thermal cameras operate in longwave infrared

4 http://www.zefirus.org/ThermalGAN/
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Fig. 1. Overview of color-thermal ReID using our ThermalGAN framework. We trans-
form a single color probe image A to multimodal thermal probe set {B1, . . . , Bi}. We
use thermal signatures I to perform matching with real thermal gallery set.

(LWIR, 8–14 µ) and provide real temperatures of a person body which are more
stable to viewpoint changes than near-infrared images [45, 54, 58].

This paper is focused on the development of a ThermalGAN framework for
color-thermal cross-modality person ReID. We use assumptions of Bhuiyan [4]
and Zhu [62] as a starting point for our research to develop a color-to-thermal
transfer framework for cross-modality person ReID. We perform matching using
calibrated thermal images to benefit from the stability of surface temperatures
to changes in light intensity and viewpoint. Matching is performed in two steps.
Firstly, we model a person appearance in a thermal image conditioned by a
color image. We generate a multimodal thermal probe set from a single color
probe image using a generative adversarial network (GAN). Secondly, we perform
matching in thermal images using the synthesized thermal probe set and a real
thermal gallery set (Figure 1).

We collected a new ThermalWorld dataset to train our GAN framework and
to test the ReID performance. The dataset contains two parts: ReID and Visual
Objects in Context (VOC). The ReID split includes 15118 pairs of color and
thermal images and 516 person ID. The VOC part is designed for training color-
to-thermal translation using a GAN framework. It consists of 5098 pairs of color
and thermal images and pixel-level annotations for ten classes: person, car, truck,
van, bus, building, cat, dog, tram, boat.

We perform an evaluation of baselines and our framework on the Thermal-
World dataset. The results of the evaluation are encouraging and show that our
ThermalGAN framework achieves and surpasses the state-of-the-art in the cross-
modality color-thermal ReID. The new ThermalGAN framework will be able to
perform matching of color probe image with thermal gallery set in video surveil-
lance applications.

Section 2 presents the structure of the developed ThermalWorld dataset.
In Section 3 we describe the ThermalGAN framework and thermal signature-
based matching. In Section 4 we give an evaluation of ReID baselines and the
ThermalGAN framework on the ThermalWorld dataset.
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1.1 Contributions

We present three main contributions: (1) the ThermalGAN framework for color-
to-thermal image translation and ReID, (2) a large-scale multispectral Thermal-
World dataset with two splits: ReID with 15118 color-thermal image pairs and
516 person ID, and VOC with 5098 pairs color-thermal image pairs with ground
truth pixel-level object annotations of ten object classes, (3) an evaluation of
the modern cross-modality ReID methods on ThermalWorld ReID dataset.

2 Related work

2.1 Person re-identification

Person re-identification has been intensively studied by computer vision society
recently [4, 40, 3, 9, 12, 47]. While new methods improve the matching perfor-
mance steadily, video surveillance applications still pose challenges for ReID
systems. Recent methods regarding person ReID can be divided into three kinds
of approaches [4]: direct methods, metric learning methods and transform learn-
ing methods.

In [4] an overview of modern ReID methods was performed, and a new trans-
form learning-based method was proposed. The method models an appearance
of a person in a new camera using cumulative weight brightness transfer function
(CWBTF). The method leverages a robust segmentation technique to segment
the human image into meaningful parts. Matching of features extracted only
from the body area provides an increased ReID performance. The method also
exploits multiple pedestrian detections to improve the matching rate.

While the method provides the state-of-the-art performance on color images,
night-time application requires additional modalities to perform robust match-
ing in low-light conditions. Cross-modality color-infrared matching is gaining
increasing attention. Multiple multispectral datasets were collected in recent
years [33, 37, 35, 47, 51]. SYSU-MM01 dataset [47] includes unpaired color and
near-infrared images. RegDB dataset [51] presents color and infrared images for
evaluation of cross-modality ReID methods. Evaluation of modern methods on
these datasets has shown that color-infrared matching is challenging. Neverthe-
less, it provides an increase in ReID robustness during the night-time.

Thermal camera has received a lot of scholar attention in the field of video
surveillance [53, 8]. While thermal cameras provide a significant boost in pedes-
trian detection [42, 50] and ReID with paired color and thermal images [33],
cross-modality person ReID is challenging [37, 35, 36, 33, 34] due to severe changes
in a person appearance in color and thermal images.

Recently, generative adversarial networks (GAN) [13] have demonstrated en-
couraging results in arbitrary image-to-image translation applications. We hy-
pothesize that color-to-thermal image translation using a dedicated GAN frame-
work can increase color-thermal ReID performance.
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2.2 Color-to-thermal translation

Transformation of the spectral range of an image has been intensively studied
in such fields as transfer learning [39, 46] domain adaptation [32, 23–25] and
cross-domain recognition [47, 54, 49, 17, 21, 19, 1, 55]. In [30] a deep convolutional
neural network (CNN) was proposed for translation of a near-infrared image
to a color image. The approach was similar to image colorization [15, 56] and
style transfer [27, 44] problems that were actively studied in recent years. The
proposed architecture succeeded in a translation of near-infrared images to color
images. Transformation of LWIR images is more challenging due to the low
correlation between the red channel of a color image and a thermal image.

2.3 Generative adversarial networks

GANs increased the quality of image-to-image translation significantly [20, 54,
58] using an antagonistic game approach [13]. Isola et al. [20] proposed a pix2pix
GAN framework for arbitrary image transformations using geometrically aligned
image pairs sampled from source and target domains. The framework succeeded
in performing arbitrary image-to-image translations such as season change and
object transfiguration. Zhang et al. [54, 58] trained the pix2pix network to trans-
form a thermal image of a human face to the color image. The translation im-
proved the quality of a face recognition performance in a cross-modality thermal
to visible range setting. While human face has a relatively stable temperature,
color-thermal image translation for the whole human body with an arbitrary
background is more ambiguous and conditioned by the sequence of events that
have occurred with a person.

We hypothesize that multimodal image generation methods can model mul-
tiple possible thermal outputs for a single color probe image. Such modeling
can improve the ReID performance. Zhu et al. proposed a BicycleGAN frame-
work [63] for modeling a distribution of possible outputs in a conditional gener-
ative modeling setting. To resolve the ambiguity of the mapping Zhu et al. used
a randomly sampled low-dimension latent vector. The latent vector is produced
by an encoder network from the generated image and compared to the original
latent vector to provide an additional consistency loss. We propose a conditional
color-to-thermal translation framework for modeling of a set of possible person
appearances in a thermal image conditioned by a single color image.

3 ThermalWorld Dataset

We collected a new ThermalWorld dataset to train and evaluate our cross-
modality ReID framework. The dataset was collected with multiple FLIR ONE
PRO cameras and divided into two splits: ReID and Visual Objects in Context
(VOC). The ReID split includes 15118 aligned color and thermal image pairs
of 516 IDs. The VOC split was created for effective color-to-thermal translation
GAN training. It contains 5098 color and thermal image pairs and pixel-level
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annotations of ten object classes: person, car, truck, van, bus, building, cat, dog,
tram, boat.

Initially, we have tried to train a color-to-thermal translation GAN model
using only the ReID split. However, the trained network has poor generaliza-
tion ability due to a limited number of object classes and backgrounds. This
stimulated us to collect a large-scale dataset with aligned pairs of color and
thermal images. The rest of this section presents a brief dataset overview. For
more details on the dataset, please refer to the supplementary material.

3.1 ThermalWorld ReID Split

The ReID split includes pairs of color and thermal images captured by sixteen
FLIR ONE PRO cameras. Sample images from the dataset are presented in
Figure 2. All cameras were located in a shopping mall area. Cameras #2, 9,
13 are located in underground passages with low-light conditions. Cameras #1,
3, 7, 8, 10, 12, 14 are located at the entrances and present both day-time and
night-time images. Cameras #15,16 are placed in the garden. The rest of the
cameras are located inside the mall.

Cam4 Cam5 Cam6 Cam15

Fig. 2. Examples of person images from ThermalWorld ReID dataset.

We have developed a dedicated application for a smartphone to record se-
quences of thermal images using FLIR ONE PRO. Comparison to previous ReID
datasets is presented in Table 1.

3.2 ThermalWorld VOC Split

The VOC split of the dataset was collected using two FLIR ONE PRO cameras.
We use insights of developers of previous multispectral datasets [55, 19, 11, 2, 8,
43] and provide new object classes with pixel-level annotations. The images were
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Table 1. Comparison to previous ReID datasets. #/# represents the number of
color/infrared images or cameras.

Dataset #ID #images #cam. Color NIR Thermal

iLDS [61] 119 476 2 X × ×
CAVIAR [6] 72 610 2 X × ×
PRID2011 [18] 200 971 2 X × ×
VIPER [14] 632 1264 2 X × ×
CUHK01 [28] 972 1942 2 X × ×
CUHK03 [29] 1467 13164 6 X × ×
SYSU [16] 502 24448 2 X × ×
Market [60] 1501 32668 6 X × ×
MARS [59] 1261 1191003 6 X × ×
RegDB [37] 412 4120/4120 1/1 X × X

SYSU-MM01 [47] 491 287628/15792 4/2 X X ×

ThermalWorld 516 15818/15818 16/16 X × X

collected in different cities (Paris, Strasbourg, Riva del Garda, Venice) during all
seasons and in different weather conditions (sunny, rain, snow). Captured object
temperatures range from -20℃ to +40℃.

We hypothesized that training a GAN to predict the relative temperature
contrasts of an object (e.g., clothes/skin) instead of its absolute temperature
can improve the translation quality. We were inspired by the previous work on
the explicit encoding of multiple modes in the output [63], and we assumed that
the thermal segmentation that provides average temperatures of the emitting
objects in the scene could resolve the ambiguity of the generated thermal images.
Examples from ThermalWorld VOC dataset are presented in Figure 3.

We manually annotated the dataset, to automatically extract an object’s
temperature from the thermal images. Comparison to previous multispectral
datasets and examples of all classes are presented in the supplementary material.

4 Method

Color-to-thermal image translation is challenging because there are multiple pos-
sible thermal outputs for a single color input. For example, a person in a cold
autumn day and a hot summer afternoon may have a similar appearance in the
visible range, but the skin temperature will be different.

We have experimented with multiple state-of-the-art GAN frameworks [5, 26,
20, 63] for multi-modal image translation on the color-to-thermal task. We have
found that GANs can predict object temperature with accuracy of approximately
5 ℃.

However, thermal images must have accuracy of 1℃to make local body tem-
perature contrasts (e.g., skin/cloth) distinguishable. To improve the translation
quality we developed two-step approach inspired by [48]. We have observed that
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Fig. 3. Examples of annotated images in ThermalWorld VOC dataset.

relative thermal contrasts (e.g., eyes/brow) are nearly invariant to changes in
the average body temperature due to different weather conditions.

We hypothesize that a prediction of relative thermal contrasts can be condi-
tioned by an input color image and average temperatures for each object. Thus,
we predict an absolute object temperature in two steps (Figure 4). Firstly, we
predict average object temperatures from an input color image. We term the
resulting image as a “thermal segmentation” image Ŝ.

Secondly, we predict the relative local temperature contrasts R̂, conditioned
by a color image A and a thermal segmentation Ŝ. The sum of a thermal seg-
mentation and temperature contrasts provides the thermal image: B̂ = Ŝ + R̂.
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Fig. 4. Overview of our ThermalGAN framework.
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The sequential thermal image synthesis has two advantages. Firstly, the prob-
lem remains multimodal only in the first step (generation of thermal segmenta-
tion). Secondly, the quality of thermal contrasts prediction is increased due to
lower standard deviation and reduced range of temperatures.

To address the multimodality in color-to-thermal translation, we use a modi-
fied BicyleGAN framework [63] to synthesize multiple color segmentation images
for a single color image. Instead of a random noise sample, we use a temperature
vector Ti, which contains the desired background and object temperatures.

The rest of this section presents a brief introduction to conditional adversarial
networks, details on the developed ThermalGAN framework and features used for
thermal signature matching.

4.1 Conditional adversarial networks

Generative adversarial networks produce an image B̂ for a given random noise
vector z, G : z → B̂ [20, 13]. Conditional GAN receives extra bits of information
A in addition to the vector z, G : {A, z} → B̂. Usually, A is an image that is
transformed by the generator network G. The discriminator network D is trained
to distinguish “real” images from target domain B from the “fakes” B̂ produced
by the generator. Both networks are trained simultaneously. Discriminator pro-
vides the adversarial loss that enforces the generator to produce “fakes” B̂ that
cannot be distinguished from “real” images B.

We train two GAN models. The first generator G1 : {Ti, A} → Ŝi syn-
thesizes multiple thermal segmentation images Ŝi ∈ R

W×H conditioned by a
temperature vector Ti and a color image A ∈ R

W×H×3. The second genera-
tor G2 : {Ŝi, A} → R̂i synthesizes thermal contrasts R̂i ∈ R

W×H conditioned
by a thermal segmentation Ŝi and the input color image A. We can produce
multiple realistic thermal outputs for a single color image by changing only the
temperature vector Ti.

4.2 Thermal segmentation generator

We use the modified BicycleGAN framework for thermal segmentation generator
G1. Our contribution to the original U-Net generator [41] is an addition of one
convolutional layer and one deconvolutional layer to increase the output reso-
lution. We use average background temperatures instead of the random noise
sample to be able to control the appearance of the thermal segmentation. The
loss function for the generator G1 is given by [63]:

G∗

1(G1, D1) = argmin
G1

max
D1

LV AE
GAN (G1, D1, E) + λL1(G1, E)

+ LGAN (G1, D1) + λthermalL
thermal
1 (G1, E) + λKLLKL(E), (1)

where LV AE
GAN – is Variational Autoencoder-based loss [63] that stimulates the

output to be multimodal, L1 – is an L1 loss, LGAN – loss provided by the
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discriminator D1, L
thermal
1 – is a loss of the latent temperature domain, LKL –

Kullback–Leibler-divergence loss, E – encoder network, λ – weight parameters.
We train both generators independently.

4.3 Relative thermal contrast generator

We hypothesize that the distribution of relative thermal contrasts conditioned by
a thermal segmentation and a color image is unimodal (compare images B and
R for various background temperatures in Figure 5). Hence, we use a unimodal
pix2pix framework [20] as a starting point for our relative contrast generator
G2. Our contribution to the original framework is two-fold. Firstly, we made the
same modifications to the generator G2 as for the generator G1. Secondly, we use
four channel input tensor. First three channels are RGB channels of an image
A, the fourth channel is thermal segmentation Ŝi produced by generator G1. We
sum the outputs from the generators to obtain an absolute temperature image.

Camera 1
Camera 3

(1)

(3)

Camera 2

(2)

(1) (2) (3)

B1
B3

28° С

25° С

17° С

R3S3R1S1
B2 R2S2

Fig. 5. Comparison of relative contrast R and absolute temperature B images for
various camera locations. The relative contrast image R is equal to the difference
of an absolute temperature B and a thermal segmentation S. Note that the person
appearance is invariant to background temperature in relative contrast images.

4.4 Thermal signature matching

We use an approach similar to [4] to extract discriminative features from thermal
images. The original feature signature is extracted in three steps [4]: (1) a person
appearance is transferred from camera Ck to camera Cl, (2) the body region
is separated from the background using stel component analysis (SCA) [22],
(3) feature signature is extracted using color histograms [9] and maximally stable
color regions (MSCR) [10].
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However, thermal images contain only a single channel. We modify color
features for absolute temperature domain. We use the monochrome ancestor of
MSCR – maximally stable extremal regions (MSER) [31]. We use temperature
histograms instead of color histograms. The resulting matching method includes
four steps. Firstly, we transform the person appearance from a single color probe
image A to multiple thermal images B̂i using the ThermalGAN framework. Var-
ious images model possible variations of temperature from camera to camera.
Unlike the original approach [4], we do not train the method to transfer person
a appearance from camera to camera. Secondly, we extract body regions using
SCA from real thermal images Bj in the gallery set and synthesized images B̂i.
After that, we extract thermal signatures I from body regions

I = f(B) =

[

Ht(B), fMSER(B)

]

, (2)

where Ht is a histogram of body temperatures, fMSER is MSER blobs for an
image B.

Finally, we compute a distance between two signatures using Bhattacharyya
distance for temperature histograms and MSER distance [31, 6]

d(Îi, Ij) = βH · dH(Ht(B̂i), Ht(Bj))

+ (1− βH) · dMSER(fMSER(B̂i), fMSER(Bj)), (3)

where dH is a Bhattacharyya distance, dMSER is a MSER distance [31], and βH

is a calibration weight parameter.

5 Evaluation

5.1 Network training

The ThermalGAN framework was trained on the VOC split of the ThermalWorld
dataset using the PyTorch library [38]. The VOC split includes indoor and out-
door scenes to avoid domain shift. The training was performed using the NVIDIA
1080 Ti GPU and took 76 hours for G1,D1 and 68 hours for G2,D2. For network
optimization, we use minibatch SGD with an Adam solver. We set learning rate
to 0.0002 with momentum parameters β1 = 0.5, β2 = 0.999 similar to [20].

5.2 Color-to-thermal translation

Qualitative comparison For a qualitative comparison of the ThermalGAN

model on the color-to-thermal translation, we generate multiple thermal images
from the independent ReID split of ThermalWorld dataset. Our goal is to keep
the resulting images both realistic and diverse in terms of person relative thermal
contrasts. We compare our framework with five baselines: pix2pix+noise [20],
cLR-GAN [5, 63], cVAE-GAN [26, 63], cVAE-GAN++ [26, 63], BicycleGAN [63]. All
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baselines were trained to convert color image to grayscale image representing
perceptual thermal contrasts (8-bit, grayscale). Our ThermalGAN framework was
trained to produce thermal images in degree Celsius. For comparison, they were
converted to perceptual thermal intensities. Results of multimodal thermal im-
age generation are presented in Figure 6.

The results of pix2pix+noise are unrealistic and do not provide a changes
of thermal contrast. cLR-GAN and cVAE-GAN produce a slight variation of ther-
mal contrasts but do not translate meaningful features for ReID. cVAE-GAN++
and BicycleGAN produce a diverse output, which fails to model thermal fea-
tures present in real images. Our ThermalGAN framework combines the power of
BicycleGAN method with two-step sequential translation to produce the output
that is both realistic and diverse.
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Fig. 6. Qualitative method comparison. We compare performance of various mul-
timodal image translation frameworks on ThermalWorld ReID dataset. For each model,
we present three random output. The output of ThermalGAN framework is realistic, di-
verse, and shows the small temperatures contrasts that are important for robust ReID.
Please note that only ThermalGAN framework produces output as calibrated tempera-
tures that can be used for thermal signature matching.

Quantitate evaluation We use the generated images to perform a quanti-
tative analysis of our ThermalGAN framework and the baselines. We measure
two characteristics: diversity and perceptual realism. To measure multimodal
reconstruction diversity, we use the averaged Learned Perceptual Image Patch
Similarity (LPIPS [57]) distance as proposed in [57, 63]. For each baseline and our
method, we calculate the average distance between 1600 pairs of random output
thermal images, conditioned by 100 input color images. We measure perceptual
realism of the synthesized thermal images using the human experts utilizing an
approach similar to [56]. Real and synthesized thermal images are presented to
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human experts in a random order for one second. Each expert must indicate
if the image is real or not. We perform the test on Amazon Mechanical Turk
(AMT). We summarize the results of the quantitative evaluation in Figure 7 and
Table 2. Results of cLR-GAN, BicycleGAN and our ThermalGAN framework were
most realistic. Our ThermalGAN model outperforms baselines in terms of both
diversity and perceptual realism.
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Fig. 7. Realism vs Diversity for
synthesized thermal images.

Realism Diversity

AMT Fooling LPIPS
Method Rate [%] Distance

Random real images 50.0%

pix2pix+noise [20] 18.17 0.131
cVAE-GAN [26, 63] 15.61 0.153
cVAE-GAN++ [26, 63] 19.21 0.098
cLR-GAN [5, 63] 27.10 0.095
BicycleGAN [63] 28.12 0.102

ThermalGAN 30.41 0.167

Table 2. Comparison with state-of-the-art mul-
timodal image-to-image translation methods.

5.3 ReID evaluation protocol

We use 516 ID from the ReID split for testing the ReID performance. Please
note, that we use independent VOC split for training color-to-thermal transla-
tion. We use cumulative matching characteristic (CMC) curves and normalized
area-under-curve (nAUC) as a performance measure. The CMC curve presents
a recognition performance versus re-identification ranking score. nAUC is an in-
tegral score of a ReID performance of a given method. To keep our evaluation
protocol consistent with related work [4], we use 5 pedestrians in the validation
set. We also keep independent the gallery set and the probe set according to the
common practice.

We use images from color cameras for a probe set and images from thermal
cameras for a gallery set. We exclude images from cameras #2, 9, 13 from the
probe set, because they do not provide meaningful data in the visible range. We
use a single color image in the single-shot setting. ThermalGAN ReID framework
uses this single color image to generate 16 various thermal images. Baseline
methods use the single input color image according to the common practice.
For the multi-shot setting, we use ten color images for the probe set. Therefore
ThermalGAN framework generates 16 thermal images for each color probe image
and generates 160 thermal images for the probe set.
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5.4 Cross-modality ReID baselines

We compare our framework with six baseline models including hand-crafted fea-
tures HOG [7] and modern deep-learning based cross-modality matching meth-
ods: One Stream Network (OSN) [47], Two Stream Network (TSN) [47], Deep
Zero-Padding (DZP) [47], Two-stream CNN network (TONE 1) [52], and Mod-
ified two-stream CNN network (TONE 2) [51].

5.5 Comparison and analysis

We show results of a comparison of our framework and baselines on Thermal-
World ReID datasets in Table 3 for a single-shot setting and in Table 4 for the
multi-shot setting. Results are given in terms of top-ranked matching rate and
nAUC. We present the results in terms of CMC curves in Figure 8.

Table 3. Experiments on ThermalWorld ReID dataset in single-shot setting.

Methods
ThermalWorld ReID single-shot

r = 1 r = 5 r = 10 r = 15 r = 20 nAUC

TONE 2 [51] 15.10 29.26 38.95 42.40 44.48 37.98
TONE 1 [52] 8.87 13.71 21.27 27.48 31.86 23.64

HOG [7] 14.29 23.56 33.45 40.21 43.92 34.86
TSN [47] 3.59 5.13 8.85 13.97 18.56 12.25
OSN [47] 13.29 23.11 33.05 40.06 42.76 34.27
DZP [47] 15.37 22.53 30.81 36.80 39.99 32.28

ThermalGAN 19.48 33.76 42.69 46.29 48.19 41.84

We make the following observations from the single-shot evaluation. Firstly,
the two-stream network [47] performs the worst among other baselines. We as-
sume that the reason is that fine-tuning of the network from near-infrared data
to thermal range is not sufficient for effective matching. Secondly, hand-crafted
HOG [7] descriptor provided discriminative features that present both in color
and thermal images and can compete with some of modern methods. Finally, our
ThermalGAN ReID framework succeeds in the realistic translation of meaningful
features from color to thermal images and provides discriminative features for
effective color-to-thermal matching.

Results in the multi-shot setting are encouraging and prove that multiple
person detection improves the matching rate with a cross-modality setup. We
conclude the following observations from the results presented in Table 4 and
Figure 8. Firstly, the performance of deep-learning-based baselines is improved in
average in 5%. Secondly, multi-shot setting improves rank-5 and rank-10 recogni-
tion rates. Finally, our ThermalGAN method benefits from the multi-shot setting
and can be used effectively with multiple person images provided by robust
pedestrian detectors for thermal images [50].
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Table 4. Experiments on ThermalWorld ReID dataset in multi-shot setting.

Methods
ThermalWorld ReID multi-shot

r = 1 r = 5 r = 10 r = 15 r = 20 nAUC

TONE 2 [51] 20.11 38.19 51.62 56.73 59.38 50.30
TONE 1 [52] 11.10 17.79 24.18 31.58 36.66 27.46

HOG [7] 16.08 27.10 40.10 48.64 51.41 40.82
TSN [47] 8.71 14.97 21.10 26.30 29.87 23.21
OSN [47] 15.36 25.17 39.14 47.65 50.04 39.85
DZP [47] 14.62 24.14 33.09 39.57 44.08 34.78

ThermalGAN 22.59 48.24 59.40 62.85 66.12 57.35
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Fig. 8. CMC plot and nAUC for evaluation of baselines and ThermalGAN method in
single-shot setting (left) and multi-shot setting (right).

6 Conclusion

We showed that conditional generative adversarial networks are effective for
cross-modality prediction of a person appearance in thermal image conditioned
by a probe color image. Furthermore, discriminative features can be extracted
from real and synthesized thermal images for effective matching of thermal sig-
natures. Our main observation is that thermal cameras coupled with a GAN
ReID framework can significantly improve the ReID performance in low-light
conditions.

We developed a ThermalGAN framework for cross-modality person ReID in
the visible range and LWIR images. We have collected a large-scale multispectral
ThermalWorld dataset to train our framework and compare it to baselines. We
made the dataset publicly available. Evaluation of modern cross-modality ReID
methods and our framework proved that our ThermalGAN method achieves the
state-of-the-art and outperforms it in the cross-modality color-thermal ReID.
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