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Abstract. Blind & visually impaired (BVI) individuals and those with
Autism Spectrum Disorder (ASD) each face unique challenges in navigat-
ing unfamiliar indoor environments. In this paper, we propose an indoor
positioning and navigation system that guides a user from point A to
point B indoors with high accuracy while augmenting their situational
awareness. This system has three major components: location recognition
(a hybrid indoor localization app that uses Bluetooth Low Energy bea-
cons and Google Tango to provide high accuracy), object recognition (a
body-mounted camera to provide the user momentary situational aware-
ness of objects and people), and semantic recognition (map-based an-
notations to alert the user of static environmental characteristics). This
system also features personalized interfaces built upon the unique expe-
riences that both BVI and ASD individuals have in indoor wayfinding
and tailors its multimodal feedback to their needs. Here, the technical
approach and implementation of this system are discussed, and the re-
sults of human subject tests with both BVI and ASD individuals are
presented. In addition, we discuss and show the system’s user-centric
interface and present points for future work and expansion.

Keywords: Indoor positioning, environmental & situational awareness,
Bluetooth beacons, Google Tango

1 Introduction

Assistive technologies aim to open access to skills and opportunities that are
often inaccessible to those with disabilities. Considering that there are 285 mil-
lion blind & visually impaired (BVI) individuals worldwide [22] and that people
with Autism Spectrum Disorder (ASD) often lack the ability to develop cogni-
tive maps of places they have been to [8], a need was identified for an assistive
technology that can aid these individuals in indoor navigation. In light of this, we
propose a specialized, full-fledged, multisensor system called ASSIST (“Assistive
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Sensor Solutions for Independent and Safe Travel”) with the goal of promoting
independent and safe travel within complex indoor environments for BVI and
ASD individuals. ASSIST is centered around an Android mobile application
that relies on the use of Bluetooth Low Energy (BLE) beacons alongside the
area learning, motion tracking, and localization capabilities provided by Google
Tango. In addition to providing turn-by-turn indoor navigation, we introduce
provisions for situational and environmental awareness, including people detec-
tion/recognition and static environment information. These capabilities are com-
bined and presented in a flexible and user-friendly application (“app”) which can
be operated using either touch or voice inputs and can be configured as needed
by varying the type and level of feedback, allowing for a unique experience for
each user. Our main goal with this system is to improve the quality of life of our
users by promoting confidence and independence when it comes to daily indoor
navigation. To this end, our work has the following four unique features:

1. A multi-level recognition mechanism for robust navigation: (a) Lo-
cation recognition by improving our previously-created hybrid BLE-Tango
system [10] to ensure robustness; (b) object recognition by utilizing a wear-
able camera to provide reliable alerting of dynamic situational elements (such
as people in the user’s surroundings); and (c) semantic recognition by using
map annotations to provide alerting of static environmental characteristics.

2. User-centric multimodal interfaces: The ASSIST app provides a user-
centric interface that features multimodal feedback, including a visual in-
terface, voice input and feedback, and vibration reminders. Users can also
customize the interfaces for various metrics (steps, meters, feet) and modal-
ities (visual, audio, tactile) based on their challenges (i.e., BVI or ASD).

3. Near real-time response and zero training: The ASSIST system is
optimized such that information is provided to the user in near real-time.
Next to no training is needed for a user to use the app and system. We
have also performed user-centric, real-world tests with the overall system to
determine its usability to people with disabilities, including BVI and ASD
individuals (the results for which are presented).

4. Modular hardware/software design: We formulate a hardware/software
workflow to produce a working system and open avenues for future work. A
modular implementation is targeted to allow for easy adding/upgrading of
features.

2 Related Work

2.1 Indoor map learning and localization

Research into accurate indoor positioning and navigation has proposed the use
of various technologies, including but not limited to the use of cameras on smart-
phones [9], RFID tags [3], NFC signals [13] and inertial measurement unit (IMU)
sensors [16]. Bluetooth Low Energy (BLE) beacons have been a popular tech-
nology of interest; perhaps the most relevant project is NavCog, a smartphone-
based “mobility aid” which solely uses BLE beacons to provide turn-by-turn
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navigation and information about nearby points-of-interest and accessibility is-
sues [1]. Another BLE-based system proposed the use of beacons as part of a
system to provide the visually impaired with information about the topology of
an approaching urban intersection [2]. However, these BLE-based systems have
relatively low localization accuracy (up to meters) and, thus, cannot work well
in crowded or cramped indoor environments. Google Tango has also been of
interest with the most relevant project being ISANA, a context-aware indoor
navigation system implemented using Tango, which parses CAD files to create
indoor semantic maps which are then used in path planning alongside other
assistive features such as sign reading and obstacle alerting using the onboard
camera [7]. However, limited real-world tests have been performed.

Our own previous work proposed a method of indoor localization that in-
volves combining both BLE beacon localization and Google Tango map learning
to create a highly accurate indoor positioning and navigation system [10]. The
work we present here extends the work in [10] by providing a multi-layer recogni-
tion mechanism and generalizing coverage of the modeling and navigation across
multiple floors of a building. In addition, new interfaces are created, and human
subject tests are also performed for both BVI and ASD users; whereas, our
previous work only tested the system with BVI users.

2.2 Object detection and recognition

Object detection is an integral part of providing situational awareness. Detecting
and classifying local persons or objects, within real-time speeds, is a key point
of research that can improve safety for users. YOLOv2 is a convolutional neural
network (CNN) that was built with the goal of being able to detect a large
number of classes and having fast detection speeds by applying the network to
an entire image, as opposed to localized areas [15]. Using a smartphone as the
main mode for detecting objects and alerting users is another main point of
research. [20] use the Lucas-Kanade algorithm, in addition to other optical flow
methods, to identify and track potential obstacles. Attempting to improve the
detection performance, as well as providing vibrotactile and audio alerts for their
users, [14] limit the total number of pixels needed for performing detection, and
only analyze the floor-area immediately in front of the phone’s camera.

2.3 Methods of environmental understanding

Much research has been done on giving those with cognitive and visual dis-
abilities a greater understanding of their surrounding environment. Visually im-
paired individuals usually use a cane to detect obstacles in their immediate
vicinity. Some studies have attempted to put sensors on canes to preemptively
warn the user about upcoming obstacles [18]. Other projects have taken a more
vision-based approach. A project called “SoundView” uses a mini-CCD camera
to detect objects tagged with barcodes and relay information about the presence
of these objects to a visually impaired user via an earpiece [11]. Another project
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developed a sensor module that acted like a barcode scanner that a user could
use to obtain information about the characteristics of an object of interest [5].

The system we propose is targeted toward users who have difficulties in de-
veloping cognitive maps of complex (and often unfamiliar) environments. To this
end, several works have been published that use a wearable camera to recognize
locations and localize within an environment. Furnari et al. propose a method to
segment egocentric (first-person view) videos based on the locations visited by
the holder of the camera [4]. Ortis et al. then extend this work to automatically
connect the habitual actions of users with their locations [12]. Finally, Spera et
al. extend this automatic recognition of locations in egocentric videos to localize
shopping carts within a large retail store [17]. Our work utilizes a hybrid sensor
approach so that the system may continue to work even if one sensor modality
(such as the camera) fails to work properly.

3 System Sensory Components

ASSIST consists of three primary components: location recognition via hybrid
sensors, real-world person and object detection via a body-mounted camera, and
map-based semantic recognition of the user’s environment. These three compo-
nents interact with each other to provide a user with sufficient information to
move them successfully to their destination while augmenting their understand-
ing of the environment around them. With regards to the initial setup of a loca-
tion, it is worth noting that, other than the initial installation of BLE beacons at
strategic positions hidden from view, no manipulation of the visible environment
is required for the system (including the camera portion) to work correctly.

3.1 Location recognition via hybrid sensors

Two methods of indoor positioning were of particular interest to us: Bluetooth
Low Energy (BLE) beacons and Google Tango. (Note that, although we have
continued to use it for our tests and development, Tango was deprecated by
Google in the first half of 2018. Future work will focus on integrating Tango’s
successor, ARCore, into the system, once development of ARCore adds features
to the platform such that it can act as a replacement for Tango, specifically,
after the implementation of a substitute for Tango’s “area learning” feature.)

A main consideration with using BLE beacons for localization is that received
signal strength (RSS) values are often volatile. We found that BLE signals are
extremely noisy, because they are easily attenuated by materials commonly found
in a building [6]. Thus, without the use of complex probabilistic algorithms, fine
localization using BLE is difficult. In [10], we found that, even with a relatively
dense placement of one beacon every 3-5 meters placed out of sight just above
ceiling tiles, beacons were only accurate enough by themselves to approximate

a user’s position (i.e., determine a coarse location). Yet, some users, especially
BVI, require highly accurate (fine) positioning to avoid collisions with obstacles.
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Thus, we looked into using Google Tango, which utilizes an Android-integrated
RGB-D camera with capabilities of 6-degrees-of-freedom VIO (visual-inertial
odometry) and feature-based indoor localization to allow for device pose (ori-
entation and position) estimation in a 3D environment [7]. Tango makes use of
Area Description Files (ADFs), which are feature maps of an indoor environ-
ment, and its onboard sensors to determine a device’s position within an ADF
down to a few centimeters [10]. However, due to limitations in the Tango SDK,
it is a known issue that the loading of larger ADFs (usually with a size above
60 MB) can often trigger an internal timeout/crash within the Tango SDK. The
areas mapped in our testbed ranged in size from 600 to 1000 sq. ft. and produced
ADFs that ranged in size from 15 to 40 MB (depending on the features in the
environment). Although suitable for our specific testbed, this is not practical
for an area such as a large public transportation hub, where a single “floor”
could be much larger and have many features. Thus, we require multiple ADFs
to cover an expansive area. However, this requires that the appropriate ADF be
selected automatically based on the user’s current position. (ADFs are aligned
with the area’s floor plan/map as described in our previous work, via an affine
transformation of the Tango-returned coordinates from the ADF’s coordinate
space to the map’s coordinate space [10].)

To account for these respective strengths and weaknesses, we utilize a hybrid
system that uses BLE beacons to figure out the approximate area that the
user/device is located in. The area selected by BLE beacons is represented by a
specific ADF that Google Tango uses to get the user/device’s exact position.

Hybrid localization For the coarse localization component, the phone searches
for all beacons it can detect in a one second interval. Of the beacons it detects
in this interval, the three strongest beacons are taken and run against a pre-
built database of “fingerprints” for all of the areas in question. Each fingerprint
represents a specific (x, y) position in the map coordinate space and consists
of 1) the three strongest beacons (in terms of their RSS) that can be detected
at that position and 2) the (general/coarse) area in which that (x, y) position
lies. A simple matching algorithm then matches each real-time capture with
the database entries and selects the general region associated with the matched
fingerprint. Each coarse region is associated with a specific Tango ADF. When
the BLE component successfully selects a new general region, Tango is restarted
with the ADF of this region and locks onto this new region within a few seconds.

An important consideration is the switching of ADFs when navigating on the
same floor. Since scans for BLE beacons are done at intervals of several seconds,
the system may not respond fast enough when trying to switch between areas on
the same floor. It is thus necessary to work around this delay and find a faster
method for switching in these situations. We introduce an additional mechanism
to compensate for this.

Boundary-based ADF switching for hybrid localization We can rely on
map-based labeling of borders between ADFs. When the device approaches the
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Fig. 1. Visualization of map annotations on the floor plan of a long corridor. Top (a):
ADF and beacon annotations. Diagonal lines represent coverages of respective ADFs
(one blue and one green). Area where diagonal lines overlap represents overlap between
both ADFs. Thick red line in center represents “primary” ADF border, where respec-
tive BLE/coarse localization areas meet each other. Thin orange lines to either side
represent “secondary” ADF borders where overlaps between both ADFs end. Trian-
gles represent installed beacons. Dark blue triangles are beacons representing area of
blue-lined ADF; green triangles/beacons represent area of green-lined ADF. Lighter-
blue triangles/beacons are irrelevant to this example (i.e., they represent another area
above). Since these beacons are located on the other side of the wall from the hall-
way and Bluetooth signals are known to be attenuated by materials commonly found
in a building [6], it is highly unlikely that that area will be selected. Bottom (b):
Environment and navigation annotations. Triangles represent all beacons. Green dots
represent navigational nodes. Smaller, dark blue dots represent checkpoints (i.e., points
of interest). Red “H”-like symbols represent all doorways annotated. Letter “S” next
to each of both doors on far left represents annotation for a “security” door (i.e., one
that requires a key card to open)

border between two ADFs (i.e., a “primary” border), the system can preemp-
tively restart Tango with the approaching ADF so that when we do reach it,
Tango will have already localized into the new ADF and can continue. We also
make use of “secondary” borders that act as fallbacks in situations where pri-
mary border switching fails (e.g., when the device is close to the border with
another ADF and BLE localization locks the device into the other ADF). Sec-
ondary borders make use of overlaps between adjacent ADFS such that Tango
localization will still be successful even if we have selected the wrong ADF.
Figure 1a visualizes an example of beacon placement and ADF switching logic.

ADFs are mapped strategically in the offline phase to optimize this mech-
anism. During an ADF switch, Tango is restarted; however, it may take up to
several seconds to lock onto a position in the new ADF. During this “deadlock,”
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positioning capabilities are suspended; thus, the interface does not update. It
is of paramount importance then that this deadlock not interfere with normal
navigation activities (for example, a turn cannot come up during the possible
deadlock period). To account for this, during mapping, primary ADF borders
are placed in areas where little or no navigational turns are available (e.g., in
a long corridor). Via this strategic border placement, the system is provided a
buffer during which it can lock on to its position while ensuring that the user will
not need its guidance during this period (i.e., the user simply needs to continue
walking forward during this period).

Via this modified hybrid method, we are able to ensure that our positioning
system is not limited by the size of the area. We are also able to ensure that we
can provide the highest accuracy possible (especially for BVI individuals who
require it) and that a failure of the BLE/coarse location system can be handled
in a timely manner. Furthermore, map-based ADF border marking can ensure
that the system responds as quickly as possible to general location changes. In
the end, this approach combines the coarse yet expansive location recognition of
beacons with the fine yet limited-scale location recognition of Tango.

3.2 Body camera-based recognition and alerting of variable
situational elements

As part of the modular implementation of ASSIST, people within the locality of
the user can be detected via an on-person body camera. Currently, the system
utilizes a YOLOv2 CNN model that is trained to detect people’s heads. It was
trained utilizing the Hollywood Heads dataset, consisting of 224,740 annotated
movie frames including actors’ heads [21]. This model, when running on a server
(in our case, an Amazon EC2 p2.xlarge instance running an Nvidia K80 GPU)
as opposed to a phone, has detection speeds of approximately 30 ms.

CNN-based head detection on the mobile device Our work originally
attempted to perform both head detection and tracking on the Tango device.
This was done by modifying a sample Tensorflow Android application which al-
lowed for a Tiny YOLO model to be loaded and utilized to perform detection.
The Tiny YOLO model, which aims to run very quickly at the cost of accuracy,
consists of only 16 layers and utilizes a 416x416 input image size [15]. As such,
the application read RGB images sized at 640x480 pixels, minimizing the need
for image resizing. Our model was trained using a subset of 50,000 images from
the Hollywood Heads dataset. When running on the Lenovo Phab 2 Pro, we
achieved detection speeds of approximately 800ms. The advantages to perform-
ing detection on the mobile device include having access to tracking capabilities
and the availability of depth/point cloud information provided by Tango. The
sample application implemented tracking by executing the Lucas-Kanade algo-
rithm. The points utilized for tracking were identified via a Harris filter, used
both inside and outside of detected bounding boxes. The resulting application
is capable of tracking up to 6 persons, while maintaining the detection speed of
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Fig. 2. Top (a): Detection server-annotated image showing detected heads (from
YOLOv2 CNN) and facial recognition outputs (from facial recognition model used).
Image was taken using our test body camera (a GoPro Hero5 Session). Bottom (b):
Mobile camera view utilized for determining orientation of detected person with respect
to the user’s point of view

800ms mentioned previously. (These values were attained by setting an inter-
nal class confidence level of 0.01, an ultimate detection confidence of 0.25, and
keeping a record of 200 frames of optical flow deltas.)

Utilizing Tango’s point cloud generator, we can expand our 2D RGB detec-
tions to include specific 3D information. Via a series of frame transformations,
we were able to evaluate a depth value for the centers of generated detection
bounding boxes. By transforming a point in the 640x480 frame (in which the
detected bounding boxes are placed) into a point in the 1920x1080 frame (used
for the point cloud buffer), we can then grab relative depth information via a
Tango method (which utilizes bilateral filtering on the most recently-saved point
cloud). Furthermore, by dividing the RGB frame as shown in Figure 2b, we can
relay a relative orientation of the detected person with respect to the user.

This application, though successful as a standalone implementation, proved
to be a challenge when it came to merge it with the remainder of the system.
Because the detection and tracking requires a great deal of computing power,
finding an approach for scheduling these functionalities within the full applica-
tion proved to be difficult and was subsequently abandoned.
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CNN-based head detection on an external server For our current imple-
mentation, we run a YOLOv2 model on an external server dedicated to detection.
An external server was chosen because of 1) the relative ease with which modular
vision-based functionality could be implemented or removed and 2) the fact that
the mobile application does not need to be continuously updated with every such
server change provided that the interface between the mobile application/camera
and the server remains the same.

As part of a proof-of-concept, we used a GoPro Hero5 Session as our cam-
era. (This extra camera was selected, in part, to offload computations from the
mobile device. Future work will focus on an optimized onboard implementation
using the mobile device’s camera.) The GoPro is connected via a WiFi dongle
and accessed through a Python script. From here, the recorded images are com-
pressed, encoded, and sent to an external server. On the server, the received
package is decoded, decompressed, and passed through the neural network. The
detection results are then sent to a dedicated navigation server, and ultimately
to the phone, where the corresponding information can be relayed to the user.

The model sitting on the server is more extensive than the model that orig-
inally ran on the phone. It is a YOLOv2 model, consisting of 32 layers, also
utilizing a 416x416 input image size. By running detection on a server, we have
access to more processing resources, and can thus utilize larger images which
can be resized. In order to maximize speed, however, the GoPro was set to read
in images sized at 864x480 pixels. The model was trained for 15,000 iterations,
utilizing the entire Hollywood Heads dataset. The increase in processing power
will allow for more than 6 people to be both detected and tracked, while main-
taining real-time speeds. Currently, we do not have tracking implemented on the
server, but it can be done via a similar process to the mobile implementation.

The modular nature of the server-based detection system ensures that we can
add or remove functionality. For example, we have tested the addition of a pre-
trained facial recognition model4 with which we can relay the identity of known,
detected persons to the user. Figure 2a shows an example of face detection and
recognition using a body camera.

3.3 Map-based semantic recognition and alerting of static
environmental characteristics

Our system is heavily dependent on having pre-existing floor plans/maps of the
area in question. Map-based pixel coordinates are used to mark the map on the
interface and perform related calculations, such as distance measurements. We
also label the map with navigational nodes and checkpoints. However, we can use
these floor plans further to our advantage by explicitly annotating the map with
various static characteristics of the environments represented on the map (e.g.,
the locations of doorways and elevators, as shown in Figure 1b). We can then
use these annotations to alert the user of these static elements and incorporate
them into navigation. This concept is further prominently used in our system in

4 https://github.com/ageitgey/face recognition

https://github.com/ageitgey/face_recognition
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Fig. 3. System implementation pipeline

the recognition of elevators, including the identification of the specific elevator
that the user has entered and subsequent start of navigation from the front of
this same elevator door on the destination floor.

Through this map-based semantic recognition and alerting via a heavily
annotated graph, our system can update a user in real-time about any pre-
established environment characteristics. The operation is a simple and lightweight
one that involves recognizing the environment (via the user’s current position),
searching for the appropriate information in the database, and communicating it
to the user. The amount of information that will be communicated will depend
on the preferences of the user. It should be noted that such an annotated map
can be generated automatically as shown in our previous work [19].

4 Architecture and Interfaces

4.1 System architecture

The full system has been implemented using a client-server architecture (Figure
3) due to size, speed, and scaling concerns. Although many of these operations
could theoretically be performed on a phone, doing so would not be ideal for a
large facility, because the size and scale of these operations would consume pro-
cessing power, battery life, and storage space if done on the phone itself. Thus,
the total system contains two servers in addition to the phone and body camera.
One server (called the “detection server”) receives images from the body cam-
era and processes them, detecting and recognizing faces, emotions, and other
objects it has been trained to detect. This particular server is equipped with a
graphics processing unit (GPU) and can thus perform these detections in mere
milliseconds. The results of this processing of the images are sent to another
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server. This second server (called the “navigation server”) forms the system’s
“brain” and contains all information about all aspects of the system, including
but not limited to information about the map, Tango ADFs, coordinate trans-
formations, installed BLE beacon characteristics, and visual processing results
from body camera images. Because of this, the phone is in constant contact with
the server and exchanges the necessary information with it as needed.

4.2 Real-time response and fallback plans

This information exchange occurs very quickly. A full trip of the body camera
data (from the moment the photo is taken to the announcing of the results) takes
approximately 1.1 seconds. Information exchange between the navigation server
and the phone takes only about 100-300 ms (depending on the size of the data
exchanged). These times are more than sufficient to provide a near real-time
reactive experience for the user. The navigation system and its characteristic
responsiveness can be seen in the system demo video (link provided at the end).

The recovery procedure for this system should a failure occur (e.g., loss of In-
ternet connection) is a main point of future work. In the case of a loss of Internet,
Google Tango utilizes onboard SLAM (simultaneous localization and mapping)
and VIO techniques to provide accurate positioning. Provided that ADFs have
been pre-downloaded, Tango localization will not be interrupted. However, BLE
beacon localization currently does require an Internet connection, because a
cloud-based beacon database can be shared by all instances of the app. In this
case, it may become necessary to fall back to onboard tracking using an IMU.
However, the accuracy of the use of the IMU (and, similarly, BLE beacon read-
ings themselves) may be improved via the use of an Extended Kalman Filter,
thus creating another point of future work. An alternative approach may involve
downloading the beacon database onto the user’s phone when an Internet con-
nection is readily available and thus locally performing BLE-based localization.

4.3 User-centric navigation experience

Our system employs a user-centric navigation interface by promoting config-
urability. Both the type (audio, visual, and vibrotactile) and level (information
density and vibration intensity) of feedback can be adjusted to suit varying
levels of disabilities. The system also utilizes a conversation-style voice engine,
implemented using Google’s DialogFlow, to enable voice input. This voice en-
gine can be currently used to initiate navigation and will be expanded to allow
for changing application settings and asking for additional route and situational
information during navigation. In addition, the system also provides modular
integration for smartwatches for additional forms of feedback. The design of the
system is such that next to no real “training” is required for a user to safely use
the application. Figure 4 shows some interface screens for the mobile application.
The system demo video (link provided at the end) shows a BVI individual using
the voice engine to start feedback, the audio feedback during navigation, and
specialized visual and vibrotactile feedback for individuals with ASD.
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Fig. 4. Interface screens for mobile application. From left to right : (a) home screen,
(b) navigation interface, and (c) voice engine interface

5 User Testing

Our previous work compared navigation using solely BLE beacons with nav-
igation using a hybrid BLE-Tango system [10]. Human subjects tests involved
numerical evaluations of runs to record statistics such as total interventions, trip
duration, and total bumps. In that study, we found that when subjects used hy-
brid navigation, they required significantly fewer interventions and less assistance
when compared to their runs with BLE navigation. For comparison purposes,
each path covered a single area, such as a corridor or a group of cubicles.

In this study, our goal was to evaluate the high-level usability of the entire
system and to allow users to travel across areas and floors during a single test,
thus requiring them to peruse doors and/or elevators. To this end, we performed
human subjects tests on both BVI individuals and those with ASD. For these
experiments, we used the Lenovo Phab 2 Pro, a Tango device. These tests were
performed at Lighthouse Guild, a vision rehabilitation center in New York City,
and evaluated the experiences of users when using the app and assessing subjects’
impressions of the app in guiding them between points safely and accurately. The
system demo video (link provided at the end) shows some runs.

5.1 Procedures

We conducted two separate tests (one each for BVI and ASD) of the system and
mobile application, where we asked subjects to traverse pre-selected paths using
the guidance provided by the system. To evaluate our subjects’ experiences, we
administered both a pre-experiment survey (which asked for demographics) and
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a post-experiment survey (which assessed subjects’ impressions of the application
and its various components). The BVI test had a convenience sample of 11
individuals (ranging from low vision to totally blind) use the application to
navigate themselves on three separate paths that brought them across floors.
There were 8 participants 55 years old or older, 1 participant 45-54 years old,
1 participant 35-44 years old, and 1 participant 18-24 years old; there were 7
males and 4 females. The ASD test had a small convenience sample of five male
individuals with medium-low- to high-functioning forms of ASD try two to three
separate paths on a single floor (depending on the focus of the subject). There
were 2 participants aged 25-34 years and 3 participants aged 18-24 years.

5.2 Results

According to the surveys, subjects generally had a very favorable impression of
the system. (Results are reported as means.) For the ASD tests, all five subjects
agreed to strongly agreed that using the app was easy (4.6/5), that they felt safe
while using the app (4.6/5), and that they could easily reach a destination with
the app (4.4/5). The subjects also found the app helpful to extremely helpful
(4.6/5) and were moderately to very satisfied (3.4/5) with it. Those individuals
who used the smartwatch to receive supplementary vibrotactile cues found them
moderately helpful (3.75/5).

Similar results were recorded for our tests with BVI individuals. The subjects
agreed to strongly agreed (4.5/5) that using the app was easy, agreed (4.2/5)
that they felt safe while using it, agreed (4.3/5) that they could easily reach a
destination using it, and generally found the app helpful (4.3/5). The subjects
almost universally agreed that the voice feedback provided by the app was ex-
tremely helpful (4.8/5). We also tested other features with our BVI subjects.
With regards to the voice assistant which allowed them to initiate navigation,
almost all of our subjects who used it found it extremely helpful (4.9/5). The
app would also issue guidance on corrective turns if the user was not facing the
correct direction; users found them moderately to extremely helpful (4.6/5).

5.3 Discussion of Results

The app was generally very well-received by all subjects. BVI subjects approved
of the voice feedback provided by the app as well as the simplicity of the voice
assistant. ASD subjects expressed favorable opinions on the visual and vibro-
tactile cues provided by the app and also liked the addition of a smartwatch to
keep their attention. However, we noted that BVI and ASD subjects each gave
very different feedback in what they would like to see in such a system. Feedback
gathered from our ASD tests centered mostly on optimizing the interface and
feedback provided by the app for ASD individuals (e.g., simpler instructions for
medium-low functioning ASD individuals). In contrast, feedback gathered from
our BVI tests mostly centered around fine-tuning and then augmenting the expe-
rience provided by the app (e.g., expansion of the voice assistant and possible use
of smart glasses with built-in cameras). This difference in feedback highlights the
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importance of personalizing the navigation experience to each disability. Thus,
offering users the choice to turn on or off certain features and pre-establishing
some of the assistance to be given based on the user’s disability can make the
navigation experience much more comfortable for the user.

6 Conclusion

Through our work, we have created and tested a system that would not only
guide a person indoors with high accuracy but would also augment that same
user’s understanding of his/her environment. This system consists of highly accu-
rate, BLE-Tango hybrid navigation coupled with a body camera for the alerting
of high-priority situational elements and a pre-built database of map annota-
tions for the alerting of high-priority environmental characteristics. Our system
provides a complete picture of the user’s surroundings in a user-centric way by
incorporating varying modes of feedback for different disabilities.

Evaluations have shown that such a system is welcomed by both BVI and
ASD individuals. These tests have also opened many avenues for future work with
which we could further improve and optimize this system. Additional evaluations
are also required for the testing of the visual body camera-based alerting system
which would play a pivotal role, especially for BVI users. However, in the end, our
work has established a solid base from which we can expand our current system
into a more full-fledged assistive application that can both effectively navigate
a person and augment their understanding and awareness of their environment.

System Demo

A system demo can be viewed here: https://youtu.be/Hq1EYS9Jncg.
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