
Pre-training on Grayscale ImageNet Improves

Medical Image Classification

Yiting Xie⋆ and David Richmond⋆

IBM, Watson Health, Cambridge MA 02142, USA
daverichmond@gmail.com

Abstract. Deep learning is quickly becoming the de facto standard ap-
proach for solving a range of medical image analysis tasks. However,
large medical image datasets appropriate for training deep neural net-
work models from scratch are difficult to assemble due to privacy restric-
tions and expert ground truth requirements, with typical open source
datasets ranging from hundreds to thousands of images. A standard ap-
proach to counteract limited-size medical datasets is to pre-train models
on large datasets in other domains, such as ImageNet for classification
of natural images, before fine-tuning on the specific medical task of in-
terest. However, ImageNet contains color images, which introduces arte-
facts and inefficiencies into models that are intended for single-channel
medical images. To address this issue, we pre-trained an Inception-V3
model on ImageNet after converting the images to grayscale through a
common transformation. Surprisingly, these models do not show a signif-
icant degradation in performance on the original ImageNet classification
task, suggesting that color is not a critical feature of natural image clas-
sification. Furthermore, models pre-trained on grayscale ImageNet out-
performed color ImageNet models in terms of both speed and accuracy
when refined on disease classification from chest X-ray images.

Keywords: Domain Adaptation · Transfer Learning

1 Introduction

Deep learning algorithms, especially Convolutional Neural Networks (ConvNets),
have gained great popularity in the field of medical image analysis in recent years
[1]. ConvNet-based algorithms are rapidly replacing traditional machine learn-
ing algorithms, based on human-engineered features, for tasks such as image
classification [2], object detection [3], and semantic segmentation [4].

There are two general strategies for training ConvNets: (1) training a model
from randomly initialized weights, and (2) pre-training a model on a related task,
and then refining the model on the target task. The former approach, referred to
as “training from scratch”, typically requires very large datasets to avoid over-
fitting and achieve state of the art results. Since, medical datasets are often very
small, due to privacy restrictions and the expert knowledge required to generate
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ground truth, transfer learning from a pre-trained model is a popular approach
for medical image analysis. There are numerous publicly available models that
have been pre-trained on the ImageNet dataset [5], which consists of over 1.2
million labeled photographs. In a recent paper, Rajpurkar et al. [2] fine-tuned a
DenseNet model, pre-trained on ImageNet, on a large-scale chest X-ray dataset
[6] for a multi-disease classification problem and achieved state-of-the-art results.

However, the choice to start from a pre-trained model has implications for
the final ConvNet design. In order to take a ConvNet that was pre-trained on
natural images, and fine-tune it on medical images, the medical images need to
be pre-processed to conform with the shape and structure of the original color
images used to train the network. Since medical images often contain only a
single channel, this usually involves stacking each grayscale image to a 3-channel
pseudo-color image to mimic the RGB structure of natural images. However,
the stacked 3-channel grayscale image does not contain any color information.
Therefore, it is unclear whether the filters learned from color images are fully
utilized in transfer learning, especially for filters in the first and second layers of
the ConvNet, which represent lower level features such as colors and edges.

To address this issue, we trained a ConvNet using a grayscale version of the
ImageNet data. A ConvNet was first trained from scratch on grayscale images
converted from the ImageNet dataset using a standard transformation [7]. Then
the pre-trained ConvNet was fine-tuned on two large-scale chest X-ray datasets
for two different tasks: the NIH x-ray dataset [6] for multi-disease classification,
and the Indiana University chest x-ray dataset [8] for normal image classification.
We demonstrate that a network pre-trained on grayscale ImageNet is a better
starting point for transfer learning on medical images, because it (1) leads to
more accurate classification performance of the final model, (2) increases the
speed of inference, due to the simplified kernel in the first model layer, and (3)
removes the need for unnecessary pre-processing before inference.

2 Method

This study consists of two parts: training Inception-V3 models [9] from scratch on
ImageNet and then fine-tuning the pre-trained models on the NIH and Indiana
X-ray datasets.

Inception-V3 was first trained from scratch on the original color ImageNet
dataset (LSVRC2012) to reproduce published state-of-the-art results (see Fig-
ure 1(a)). The color ImageNet model was evaluated on the original test set of
LSVRC2012. Then the same ConvNet architecture1 was trained from scratch (us-
ing the same optimization parameters) on the same ImageNet dataset (LSVRC2012)
after converting the images to grayscale, using the Luma transformation [7] (see
Figure 1(b)). The grayscale model was evaluated on the grayscale version of the
same test set.

1 The only difference was that the kernel on the input layer was reduced from 3-channel
to 1-channel
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The pre-trained color Inception-V3 model was then fine-tuned on both the
NIH and Indiana University X-ray datasets for the respective disease classifica-
tion tasks (see Figure 2(a)). The fine-tuned model was tested on a held-out test
set to establish the benchmark performance. Next, the pre-trained grayscale
Inception-V3 model was fine-tuned on the NIH and Indiana University X-ray
datasets for the same disease classification tasks (see Figure 2(b)). The fine-
tuned model was tested on the same held-out test set to compare performance
of the two approaches.

(a) (b)

Fig. 1. Training a model from scratch on ImageNet. (a) A 3-channel model is trained
and tested on color ImageNet data. (b) A 1-channel model is trained and tested on
grayscale ImageNet data.

3 Results

The ConvNet models described in this section were implemented in Tensor-
flow, and trained using asynchronous Stochastic Gradient Descent (SGD) on
two NVIDIA GTX 1080 Ti GPUs.

3.1 Experiment 1: Training color and grayscale models from scratch

for ImageNet-based classification

Training and validation images were from the ImageNet Large Scale Visual
Recognition Challenge 2012 (LSVRC2012 [5,10]). In total, 1,281,167 images were
used for training and 50,000 images for validation. For the classification chal-
lenge, there are 1000 image categories and each image belongs to one category.
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(a) (b)

Fig. 2. Fine-tuning the ImageNet-trained models on X-ray data. (a) The color model
is fine-tuned and tested on X-ray data after converting the X-ray images to 3-channel
pseudo-color images. (b) The grayscale model is fine-tuned and tested on X-ray data
without any image transformation.

For training on the color ImageNet data, standard augmentation methods
[11] were used: cropping images based on a distorted version of the annotated
bounding box, random horizontal flipping, and altering the intensities of the
RGB channel. RMSProp optimizer was used with a decay factor of 0.9. The
initial learning rate was set to 0.01 with a decay factor of 0.94 every 2 epochs [9].
The batch size was set to 64. The network was trained until the loss converged.
The model converged after about 14 days and 1.67 million steps (around 84
epochs). The validation accuracy was 0.9169 for top-5 and 0.7372 for top-1. The
state-of-the-art validation accuracy using Inception-V3 on the same dataset is
0.939 for top-5 and 0.780 for top-1 [12].

For training on the grayscale ImageNet data, the same hyper-parameters
and augmentation methods were used. After augmentation, the color images
were converted to grayscale, using the Luma transformation [7]. The batch size
was set to 64 and the network was trained until the loss converged. The model
converged after about 16 days and 1.92 million steps (around 100 epochs). The
validation images were also converted to grayscale, and the validation accuracy
was 0.9117 for top-5 and 0.7323 for top-1. Surprisingly, the performance of the
model trained and tested on grayscale ImageNet was only 0.5% lower than the
color model, suggesting that color is not a critical feature in image classification.
The results are summarized in Table 1. Figure 3 shows the first-layer kernels
learned from the color model and the grayscale model.
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Table 1. Evaluation results on ImageNet classification

Top-5 Accuracy Top-1 Accuracy

Color 0.9169 0.7372

Grayscale 0.9117 0.7323

(a) (b)

Fig. 3. First-layer kernels learned by training on (a) color ImageNet, and (b) grayscale
ImageNet.

3.2 Experiment 2: Fine-tuning on NIH X-ray dataset

The NIH X-ray dataset consists of 112,120 frontal chest X-ray images from more
than 30,000 patients. There is a total of 14 lung diseases in this dataset: Atelec-
tasis, Cardiomegaly, Emphysema, Effusion, Hernia, Infiltration, Mass, Nodule,
Pneumonia, Pneumothorax, Consolidation, Edema, Fibrosis, and Pleural thick-
ening. Each X-ray image could contain any number of the 14 diseases, or no
finding. In total, 60,361 images have no findings. The image disease labels were
mined from radiological reports using natural language processing and released
together with the X-ray images.

The X-ray dataset was partitioned into 3 subsets for training, validation and
testing following the same strategy used by Wang et al. [6]: 70% for training, 10%
for validation, and 20% for testing. Since the same patient could have multiple X-
ray images in this dataset, partition was performed to ensure that there were no
overlapping patients among the 3 subsets. Each X-ray image was down-sampled
to a fixed size compatible with the network input, and in the case of the color
model, stacked to form a 3-channel image. Random horizontal flipping was used
for training data augmentation. The final fully-connected layer in the pre-trained
model was replaced with a fully connected layer producing a 14-label output. A
sigmoid nonlinearity was used and the final output was the disease probabilities
for the 14 disease classes. The learning rate was set to 0.0001 and the batch
size was set to 32. The network was trained end-to-end until the validation loss
converged. For evaluation, the Area Under the ROC Curve (AUC) was calculated
for the 14 diseases on the testing subset.

The color model converged after about 85k steps. The grayscale model con-
verged after about 250k steps. The AUC values on the test dataset is summarized
in Table 2. The p-values were also computed to assess the statistical significance
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of the differences between each pair of ROC curves [13]. When comparing the
grayscale vs color model, all 14 categories had improved performance, and 8
out of 14 categories had performance improvements that were statistically sig-
nificant. Furthermore, the grayscale model was approximately 20% faster for
inference than the color model (see Table 4).

Table 2. Results (AUC) on NIH X-ray test data for 14 diseases after fine-tuning a
pre-trained Inception-V3 model (c=color, g=grayscale). * p<0.05, ** p<0.01

Disease Avg Atelectasis Cardiomegaly Emphysema Effusion Hernia Infiltration

AUC (c) 0.7498 0.7613 0.7785 0.7898 0.8320 0.6843 0.6835

AUC (g) 0.7706 0.7824** 0.8091* 0.8393** 0.8423* 0.7035 0.6895

Mass Nodule Pneumonia Pneumothorax Consolidation Edema Fibrosis PT

0.7132 0.6807 0.6905 0.8145 0.7489 0.8689 0.7310 0.7204

0.7498** 0.7096** 0.7021 0.8326* 0.7606 0.8784 0.7454 0.7452*

3.3 Experiment 3: Fine-tuning on Indiana University X-ray dataset

The Indiana University X-ray dataset consists of around 8000 X-ray images from
more than 3000 different patients. There are more than 100 types of disease labels
in this dataset as well as the label indicating whether the image is normal or
not. In our experiment, one frontal X-ray image was selected for each patient
with associated medical report, resulting in a total of 3691 patients and images.
A binary classification task of normal versus abnormal was performed on this
dataset.

The Indiana University X-ray dataset was partitioned into 70%, 10%, and
20% for training, validation, and testing. Random horizontal flipping was used
for training augmentation. The softmax loss was used and the final layer output
was the probability indicating whether the image was normal or not. The learning
rate was set to 0.0001 and the batch size was set to 32. The network was trained
end-to-end until the validation loss converged. For evaluation, the accuracy and
the Area Under the ROC Curve (AUC) was calculated on the testing subset.

The color model converged after about 11k steps. The grayscale model con-
verged after about 9k steps. The accuracy and AUC values on the test dataset
is summarized in Table 3. For the Indiana X-ray dataset, the grayscale model
had improved performance; however, the difference in performance was not sta-
tistically significant. Inference with the grayscale model was approximately 5%
faster (see Table 4).

4 Discussion and Conclusion

Due to the limited size of most medical imaging datasets, pre-training ConvNet
models on large image repositories, such as ImageNet, is a common initialization
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Table 3. Results on the Indiana X-ray test data for normal vs abnormal classification
using pre-trained Inception-V3 model.

Accuracy AUC

Color 0.7225 0.7124

Grayscale 0.7262 0.7285

Table 4. Inference time (ms/image)

NIH Indiana University

Color 8.0 7.5

Grayscale 6.4 7.1

strategy. However, due to the long training time required to train models from
scratch on ImageNet, they are typically downloaded from publications focused
on processing natural images. This leads to artefacts, whereby single-channel
medical images must be pre-processed to 3-channel pseudo-color images before
they can be analyzed by the network.

We show that transferring ImageNet data to a single-channel (i.e., grayscale)
domain leads to better pre-trained models that (1) achieve higher classification
accuracy after being fine-tuned on medical X-ray image data, (2) are faster
during inference, and (3) avoid unnecessary pre-processing. We hypothesize that
the network pre-trained on grayscale images has the potential to learn more
features relevant to grayscale images, which serves to boost the transfer learning
performance when applied to a grayscale medical dataset.

Surprisingly, after converting both training and testing sets of the ImageNet
LSVRC2012 data to grayscale, the test set performance was only reduced by
0.5%, from a top-5 accuracy of 0.9169 for the color model to 0.9117 for the
grayscale model. This result was counter to our expectation that color would
be an important feature for accurate classification of natural images. However,
it seems to be consistent with the success of colorization methods [14,15] which
produce realistic-looking color images from grayscale image information.

We also compared class-specific performance between the two models. While
for the majority of the classes, the two models had very similar performance,
the color model outperformed grayscale model on classes such as ice-cream and
mink. For example, the grayscale model classified some ice-cream images into the
chocolate sauce class. The grayscale model performed better on classes including
pier and printer (the color model classified a lot of pier images into suspension
bridges). An intuitive explanation could be that color information is more im-
portant for discriminating between certain classes such as ice cream vs chocolate
sauce (e.g., chocolate sauce is brown) but not for other classes such as pier vs
suspension bridge. Figure 4 shows some example images from these two classes
in color and in grayscale.



8 Y. Xie and D. Richmond

(a) (b)

Fig. 4. Example images belonging to (a) the ice-cream class and (b) the pier class.
Upper row shows the color images and lower row shows the corresponding grayscale
images.

In conclusion, color does not seem to be a critical feature for accurate classi-
fication of natural images, and pre-training on grayscale images can give a boost
in both speed and accuracy when fine-tuning on medical images. In future, it
would be interesting to apply this approach to semantic segmentation and object
detection in medical images, through the use of standard network architectures
such as fully convolutional networks (FCN), and region-based convolutional neu-
ral networks (R-CNN). It would also be interesting to explore additional image
transformations that may be more appropriate for different imaging modalities,
such as Ultrasound and Magnetic Resonance Imaging.
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