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Abstract. In this work, we propose a novel framework for unsupervised
learning for event cameras that learns to predict optical flow from only
the event stream. In particular, we propose an input representation of
the events in the form of a discretized 3D volume, which we pass through
a neural network to predict the optical flow for each event. This optical
flow is used to attempt to remove any motion blur in the event image. We
then propose a loss function applied to the motion compensated event
image that measures the motion blur in this image. We evaluate this
network on the Multi Vehicle Stereo Event Camera dataset (MVSEC),
along with qualitative results from a variety of different scenes.
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1 Introduction

Event cameras, such as in Lichtsteiner et al. [3], are a neuromorphically inspired,
asynchronous sensing modality, which detect changes in log light intensity. The
changes are encoded as events, e = {x, y, t, p}, consisting of the pixel position,
x, y, timestamp, t, accurate to microseconds, and the polarity, p. The cameras
provide numerous benefits, such as extremely low latency for tracking very fast
motions, high dynamic range, and significantly lower power consumption.

Recently, several methods have shown that flow and other motion informa-
tion can be estimated by ’deblurring’ the event image [1, 5, 7]. For frame data,
unsupervised optical flow methods such as [2, 4] have shown that neural networks
can learn to predict optical flow from geometric constraints, without any ground
truth labels.

In this work, we propose a novel input representation that captures the full
spatiotemporal distribution of the events, and a novel unsupervised loss func-
tion that allows for efficient learning of motion information from only the event
stream. Our input representation, a discretized event volume, discretizes the time
domain, and then accumulates events in a linearly weighted fashion similar to
interpolation. We train a neural network to predict a per-pixel optical flow from
this input, which we use to attempt to deblur the events through motion com-
pensation. During training, we then apply a loss that measures the motion blur
in the motion compensated image, which the network is trained to minimize.
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2 Method

We propose a novel input representation generated by discretizing the time do-
main. In order to improve the resolution along the temporal domain beyond
the number of bins, we insert events into this volume using a linearly weighted
accumulation similar to bilinear interpolation.

Given a set of N input events {(xi, yi, ti, pi)}i=0,...,N−1, we divide the range
of the timestamps, tN−1 − t0, which varies depending on the input events, into
B bins. We then scale the timestamps to the range [0, B − 1], and generate the
event volume as follows:

t∗i =(B − 1)(ti − t0)/(tN−1 − t0) (1)

V (x, y, t) =
∑

i

pi max(0, 1− |x− xi|)max(0, 1− |y − yi|)max(0, 1− |t− t∗i |)

(2)

We treat the time domain as channels in a traditional 2D image, and perform
2D convolution across the x, y spatial dimensions.

Given optical flow for each pixel, u(x, y), v(x, y), we propagate the events,
with scaled timestamps, {(xi, yi, t

∗
i , pi)}i=1,...,N , to a single time t′:

(

x′
i

y′i

)

=

(

xi

yi

)

+ (t′ − t∗i )

(

u(xi, yi)
v(xi, yi)

)

(3)

We then separate these propagated events by polarity, and generate a pair of
images, T+, T−, consisting of the average timestamp at that pixel, similar to
Mitrokhin et al. [5]. However, by generating these images using interpolation on
the pixel coordinates rather than rounding them, this operation is fully differ-
entiable.

T{+,−}(x, y, t
′) =

∑

i max(0, 1− |x− x′
i|)max(0, 1− |y − y′i|)ti

N(x, y)
(4)

where N(x, y) is the number of events contributing to each pixel. The loss is,
then, the sum of the two images squared, as in Mitrokhin et al. [5].

Ltime(t
′) =

∑

x

∑

y

T+(x, y)
2 + T−(x, y)

2 (5)

As we scale the flow by (t′ − ti∗) in (3), the gradient through events with times-
tamps closer to t′ will be weighted lower. To resolve this unequal weighting, we
compute the loss both backwards and forwards:

Ltime =Ltime(t0) + Ltime(tN−1) (6)

We combine this loss with a spatial smoothness loss, Lsmoothness, applied to the
output flow, with our final loss being a weighted sum of the timestamp loss and
the smoothness loss:

Ltotal =Ltime + λLsmoothness (7)

Our network consists of an encoder-decoder architecture, as defined in Zhu et
al. [6].
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outdoor day1 indoor flying1 indoor flying2 indoor flying3
dt=1 frame AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier

Ours 0.37 0.0 0.59 0.0 1.02 3.2 0.89 2.5
EV-FlowNet 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9

UnFlow 0.97 1.6 0.50 0.1 0.70 1.0 0.55 0.0

dt=4 frames AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier
Ours 1.23 7.4 2.26 25.8 3.92 52.1 3.27 41.6

EV-FlowNet 1.23 7.3 2.25 24.7 4.05 45.3 3.45 39.7
UnFlow 2.95 40.0 3.81 56.1 6.22 79.5 1.96 18.2

Table 1: Quantitative evaluation of our optical flow network against EV-FlowNet
and UnFlow. Average Endpoint Error (AEE) is computed in pixels, % Outlier
is computed as the percent of points with AEE < 3 pix.

Fig. 1: Top: Result from MVSEC, left to right: blurred event image, deblurred
image, predicted flow, ground truth flow. Bottom: Challenging scenes. Top im-
ages: sparse flow vectors on the grayscale image, bottom: dense flow output,
colored by direction. Left to right: Fidget spinner spinning at 40 rad/s in the
dark. Ball thrown quickly (the grayscale image does not pick up the ball). Water
flowing outdoors.

3 Experiments

For all experiments, we train our network on the outdoor day2 sequence from
MVSEC [8], consisting of 11 mins of stereo event driving data. Each input to
the network consists of 30000 events, with volumes with resolution 256x256 and
B = 9 bins. The model is trained for 300,000 iterations, and takes around 15
hours to train on a NVIDIA Tesla V100.

For evaluation, we tested on the same sequences as in EV-FlowNet [6], and
present a comparison against their results as well as UnFlow [4]. We convert
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the output of our network, (u, v), into units of pixel displacement by the fol-
lowing scale factor: (û, v̂) = (u, v) × (B − 1) × dt/(tN − t0), where dt is the
test time window. From the quantitative results in Tab. 1, we can see that our
method outperforms EV-FlowNet in almost all experiments, and nears the per-
formance of UnFlow on the 1 frame sequences. As our event volume maintains
the distribution of all of the events, we do not suffer from losing information
as EV-FlowNet when there is a large motion. Our network also generalizes to a
number of challenging scenes, as can be seen in Fig. 1.

4 Conclusions

In this work, we demonstrate a novel input representation for event cameras,
which, when combined with our motion compensation based loss function, allows
a deep neural network to learn to predict optical flow from the event stream only.
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