Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, Philip H. S. Torr; Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 532-547

Abstract


Incremental learning (IL) has received a lot of attention recently, however, the literature lacks a precise problem definition, proper evaluation settings, and metrics tailored specifically for the IL problem. One of the main objectives of this work is to fill these gaps so as to provide a common ground for better understanding of IL. The main challenge for an IL algorithm is to update the classifier whilst preserving existing knowledge. We observe that, in addition to forgetting, a known issue while preserving knowledge, IL also suffers from a problem we call intransigence, its inability to update knowledge. We introduce two metrics to quantify forgetting and intransigence that allow us to understand, analyse, and gain better insights into the behaviour of IL algorithms. Furthermore, we present RWalk, a generalization of EWC++ (our efficient version of EWC) and Path Integral with a theoretically grounded KL-divergence based perspective. We provide a thorough analysis of various IL algorithms on MNIST and CIFAR-100 datasets. In these experiments, RWalk obtains superior results in terms of accuracy, and also provides a better trade-off for forgetting and intransigence.

Related Material


[pdf]
[bibtex]
@InProceedings{Chaudhry_2018_ECCV,
author = {Chaudhry, Arslan and Dokania, Puneet K. and Ajanthan, Thalaiyasingam and Torr, Philip H. S.},
title = {Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}