CubeNet: Equivariance to 3D Rotation and Translation

Daniel Worrall, Gabriel Brostow; Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 567-584


3D Convolutional Neural Networks are sensitive to transformations applied to their input. This is a problem because a voxelized version of a 3D object, and its rotated clone, will look unrelated to each other after passing through to the last layer of a network. Instead, an idealized model would preserve a meaningful representation of the voxelized object, while explaining the pose-difference between the two inputs. An equivariant representation vector has two components: the invariant identity part, and a discernable encoding of the transformation. Models that can't explain pose-differences risk ``diluting'' the representation, in pursuit of optimizing a classification or regression loss function. We introduce a Group Convolutional Neural Network with linear equivariance to translations and right angle rotations in three dimensions. We call this network CubeNet, reflecting its cube-like symmetry. By construction, this network helps preserve a 3D shape's global and local signature, as it is transformed through successive layers. We apply this network to a variety of 3D inference problems, achieving state-of-the-art on the ModelNet10 classification challenge, and comparable performance on the ISBI 2012 Connectome Segmentation Benchmark. To the best of our knowledge, this is the first 3D rotation equivariant CNN for voxel representations.

Related Material

[pdf] [arXiv]
author = {Worrall, Daniel and Brostow, Gabriel},
title = {CubeNet: Equivariance to 3D Rotation and Translation},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}