Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Joel Janai, Fatma Guney, Anurag Ranjan, Michael Black, Andreas Geiger; Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 690-706


Learning optical flow with neural networks is hampered by the need for obtaining training data with associated ground truth. Unsupervised learning is a promising direction, yet the performance of current unsupervised methods is still limited. In particular, the lack of proper occlusion handling in commonly used data terms constitutes a major source of error. While most optical flow methods process pairs of consecutive frames, more advanced occlusion reasoning can be realized when considering multiple frames. In this paper, we propose a framework for unsupervised learning of optical flow and occlusions over multiple frames. More specifically, we exploit the minimal configuration of three frames to strengthen the photometric loss and explicitly reason about occlusions. We demonstrate that our multi-frame, occlusion-sensitive formulation outperforms existing unsupervised two-frame methods and even produces results on par with some fully supervised methods.

Related Material

author = {Janai, Joel and Guney, Fatma and Ranjan, Anurag and Black, Michael and Geiger, Andreas},
title = {Unsupervised Learning of Multi-Frame Optical Flow with Occlusions},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}