Learning Visual Question Answering by Bootstrapping Hard Attention

Mateusz Malinowski, Carl Doersch, Adam Santoro, Peter Battaglia; Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3-20


Attention mechanisms in biological perception are thought to select subsets of perceptual information for more sophisticated processing which would be prohibitive to perform on all sensory inputs. In computer vision, however, there has been relatively little exploration of hard attention, where some information is selectively ignored, in spite of the success of soft attention, where information is re-weighted and aggregated, but never filtered out. Here, we introduce a new approach for hard attention and find it achieves very competitive performance on a recently-released visual question answering dataset, equalling and in some cases surpassing similar soft attention architectures while entirely ignoring some features. Even though the hard attention mechanism is not differentiable, we found that the feature magnitudes correlate with semantic relevance, and provided a useful signal for our mechanism's attentional selection criterion. Because hard attention selects important features of the input information, it can also be more efficient than analogous soft attention mechanisms. This is especially important for recent approaches that use non-local pairwise operations, whereby computational and memory costs are quadratic in the size of the set of features.

Related Material

[pdf] [arXiv]
author = {Malinowski, Mateusz and Doersch, Carl and Santoro, Adam and Battaglia, Peter},
title = {Learning Visual Question Answering by Bootstrapping Hard Attention},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}