Hand Pose Estimation via Latent 2.5D Heatmap Regression

Umar Iqbal, Pavlo Molchanov, Thomas Breuel Juergen Gall, Jan Kautz; Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 118-134


Estimating the 3D pose of a hand is an essential part of human-computer interaction. Estimating 3D pose using depth or multi-view sensors has become easier with recent advances in computer vision, however, regressing pose from a single RGB image is much less straightforward. The main difficulty arises from the fact that 3D pose requires some form of depth estimates, which are ambiguous given only an RGB image. In this paper we propose a new method for 3D hand pose estimation from a monocular image through a novel 2.5D pose representation. Our new representation estimates pose up to a scaling factor, which can be estimated additionally if a prior of the hand size is given. We implicitly learn depth maps and heatmap distributions with a novel CNN architecture. Our system achieves the state-of-the-art estimation of 2D and 3D hand pose on several challenging datasets in presence of severe occlusions.

Related Material

author = {Iqbal, Umar and Molchanov, Pavlo and Gall, Thomas Breuel Juergen and Kautz, Jan},
title = {Hand Pose Estimation via Latent 2.5D Heatmap Regression},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}