DeepIM: Deep Iterative Matching for 6D Pose Estimation

Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, Dieter Fox; Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 683-698


Estimating the 6D pose of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by matching the rendered image with the input image. The network is trained to predict a relative pose transformation using an untangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over state-of-the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.

Related Material

[pdf] [arXiv]
author = {Li, Yi and Wang, Gu and Ji, Xiangyang and Xiang, Yu and Fox, Dieter},
title = {DeepIM: Deep Iterative Matching for 6D Pose Estimation},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}