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Abstract. Autofocus (AF) on smartphones is the process of determin-
ing how to move a camera’s lens such that certain scene content is in
focus. The underlying algorithms used by AF systems, such as contrast
detection and phase differencing, are well established. However, deter-
mining a high-level objective regarding how to best focus a particular
scene is less clear. This is evident in part by the fact that different smart-
phone cameras employ different AF criteria; for example, some attempt
to keep items in the center in focus, others give priority to faces while
others maximize the sharpness of the entire scene. The fact that dif-
ferent objectives exist raises the research question of whether there is a
preferred objective. This becomes more interesting when AF is applied to
videos of dynamic scenes. The work in this paper aims to revisit AF for
smartphones within the context of temporal image data. As part of this
effort, we describe the capture of a new 4D dataset that provides access
to a full focal stack at each time point in a temporal sequence. Based on
this dataset, we have developed a platform and associated application
programming interface (API) that mimic real AF systems, restricting
lens motion within the constraints of a dynamic environment and frame
capture. Using our platform we evaluated several high-level focusing ob-
jectives and found interesting insight into what users prefer. We believe
our new temporal focal stack dataset, AF platform, and initial user-study
findings will be useful in advancing AF research.

Keywords: autofocus, focal stack, AF platform, low-level computer vi-
sion

1 Introduction

One of the crucial steps in image capture is determining what part of the scene to
focus on. In this paper, we examine this problem for smartphone cameras because
smartphones now represent the dominant modality of video and image capture
performed by consumers. While manual focus is possible on smartphones–either
through direct manipulation of the lens position or by clicking on regions of
interest in the scene–most users rely on the camera’s autofocus (AF) mechanism.

The goal of AF is straightforward. Given some high-level objective of what
scene content or image region is desired to be in focus, AF systems attempt to
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Fig. 1: An Apple iPhone 7 and Google Pixel are used to capture the same dy-
namic scene controlled via translating stages. At different time slots in the cap-
tured video, denoted as 0 sec, 5 sec, 8 sec, it is clear that each phone is using
a different AF objective. It is unclear which is the preferred AF objective. This
is a challenging question to answer as it is very difficult to access a full (and
repeatable) solution space for a given scene.

move the lens such that these regions appear sharpest. From an optical point
of view, the sharpness correlates to the desired image region lying within the
len’s depth of field. Smartphone cameras, as opposed to digital single-lens reflex
(DSLR) and point-and-shoot cameras, are unique in this regard, since they have
fixed apertures and depth of field is therefore restricted to lens position only.

The low-level algorithms used to determine image sharpness–for example,
contrast detection and phase differencing–are well established. What is more
challenging is using these low-level algorithms to realize high-level AF objectives
for dynamic scene content in a temporal image sequence (i.e., video). This is
evident from the variety of different AF criteria used by different smartphone
cameras. Figure 1 shows an illustrative example. In this example, an Apple
iPhone 7 and a Google Pixel have captured a scene with objects that move on a
translating stage. The translating stage and controlled environment allow each
camera to image the same dynamic scene content. We can see that each camera
is focusing on different image regions at the same time slots in the video.

This begs the question of which of these two approaches is preferred by a
user. From a research point of view, one of the major challenges when develop-
ing AF algorithms is the inability to examine the full solution space since only a
fixed focal position can be captured at each time instance. While it is possible to
capture a full focal stack for a static scene, it is currently not possible for a tem-
poral image sequence in a dynamic environment. Moreover, there are additional
constraints in an AF system beyond determining the right focal position given
a full focal stack. For example, the lens cannot be instantaneously moved to
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the correct focal position; it can only advance either forward or backward within
some fixed amount of time, and within this time quantum the scene content may
change and the current video frame may advance. This lack of access to (1) tem-
poral focal stack data and (2) an AF platform that holistically incorporates lens
motion, scene dynamics, and frame advancement is the impetus for our work.
Contribution The contribution of this work is a software platform for AF re-
search and an associated 4D temporal focal stack dataset. Our AF platform
allows the design, testing, and comparison of AF algorithms in a reproducible
manner. Our focal stack dataset is composed of 33,000 full-frame images consist-
ing of 10 temporal image sequences, each containing 50–90 full focal stacks. Our
software platform provides an AF application programming interface (API) that
mimics the real-time constraints, including lens motion timing with respect to
scene motion and frame advancement. Additionally, we have performed analysis
on several smartphone AF algorithms to come up with a set of representative
high-level AF objectives. Using our platform and data we have implemented
these algorithms to produce similar outputs found on real phones and used the
results to perform a user study to see if there are any preferences. Our user study
reveals that overall lens motion, and not necessarily the actual scene content in
focus, is the predominant factor dictating preference. We believe our dataset and
software platform will provide further opportunities for revisiting AF research.

2 Related work

Work relating to autofocus and focal stack datasets is discussed in this section.
AF for cameras AF technologies have been around for several decades and
a full discussion regarding existing AF methods is outside the scope of this
paper. Here, we provide background to methods used in smartphone devices
and that are related to our platform. The vast majority of smartphone cameras
have simple optical systems with a fixed aperture that limits focus to lens motion
(and not aperture adjustments). There are active AF methods that use auxiliary
hardware, such as laser depth sensors; however, this paper focuses only on passive
AF methods that rely on data captured from the image sensor.

There are two predominant types of passive AF: phase difference autofo-
cus (PDAF) and contrast detection autofocus (CDAF). PDAF operates at a
hardware/optics level and aims to adjust the lens position such that the phase
between two light rays coming from a scene point is matched. The PDAF hard-
ware module can be designed in two ways: (1) half sub-mirror with line sensor
as used in older DSLR cameras [1,2] and (2) on-sensor dual-pixel layouts used
in modern DSLR and smartphone cameras [3,4]. Compared with CDAF, PDAF
methods are able to approximate the optimal lens position in a single processing
step; however, PDAF alone is generally not sufficient to give an accurate focusing
lens position.

CDAF is the most common approach used in DLSR and smartphone cam-
eras. CDAF operates by applying low-level image processing algorithms (i.e.,
gradient magnitude analysis) to determine the sharpness of a single image or re-
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Scene 1 2 3 4 5 6 7 8 9 10

Example
image

Category NF FF NF FF FB NF FF

Camera stationary moving stationary moving stationary

Textured
background

✓ ✗ ✓

Face ✗ ✓ ✗ ✓ ✗ ✓

Motion
1 3 0 2 2

switches

Video
length

21.6 sec 27.5 sec 29 sec 30.8 sec 39.1 sec

Discrete
time points

51 61 71 91

Table 1: The 10 scenes/image sequences in our AF dataset. See Sec. 3.3 for detail
of the table and video/image sequence description. The final table row, discrete
time points, denotes the number of full focal stacks per captured temporal image
sequence.

gion of interest (ROI) in an image [5]. Because CDAF works on a single image,
the camera lens needs to be moved back and forth until the image sharpness
measure is maximized [6]. Many different sharpness measures have been pro-
posed and several surveys exist that examine their performance under various
conditions [7,8].

Most of the recent smartphone cameras use so-called hybrid AF that utilizes
both PDAF and CDAF. In particular, the hybrid AF performs PDAF first to
move the lens to a position close to the optimal focusing position and then
performs CDAF to accurately fine-tune the lens position to reach the optimal
focusing position [9].

Focal stack datasets Beyond various ad hoc focal stack data available on-
line from class projects and photography enthusiasts, there are very few formal
focal stack datasets available for academic research. Two notable datasets are
by Mousnier et al. [10] and Li et al. [11]. The dataset in [10] provides 30 focal
stacks of static scenes of images of size 1088×1088 pixels. The dataset in [11]
captured 100 focal stacks of image size 1080×1080 pixels, again of static scenes.
The number of images per focal stack ranges from 5 to 12. These datasets are
not intended for the purpose of AF research, but instead target tangentially re-
lated topics, such as digital refocusing [12,13,14], depth from defocus [15,16],
and depth from focal stacks [17].

In addition, the focal stacks in these datasets are synthetically generated
based on the Lytro light field camera [18,19]. Unfortunately, the consumer-level
Lytro devices do not support video capture. The new Lytro Cinema does offer
video light field capture, but the cost of renting this device is prohibitively high
(in the hundreds of thousands of dollars). Moreover, the Lytro Cinema is not rep-
resentative of smartphones. Unlike the datasets in [10,11], our dataset provides
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Fig. 2: A top view of our capture environment. Each shoot contains the scene
components: linear stage actuators, smartphone camera, tripod, objects, and
scene background.

a much larger focal stack of 50 images of size 3264×1836 pixels, and consists of
10 temporal image sequences with up to 90 full focal stacks per sequence.

3 AF analysis and dataset capture

3.1 Capture environment

To begin our effort, we constructed an environment that allowed scenes with
different content and moving objects to be imaged in a repeatable manner. All
videos and images were captured indoors using a direct current (DC) light source
to avoid the flickering effect of alternating current lights [20]. To control scene
motion, we used three DIY-CNC linear stage actuators that were controlled by
a ST-4045-A1 motor driver and Arduino/Genuino Uno microcontroller. Each
linear stage has a travel length of 410mm and uses a stepper motor of Nema
23 24V 3A 1N.M. The three linear stage actuators can be combined together to
give more degrees of freedom. We calibrated our motors to allow 106 equal steps
of 3.87mm each with a motion speed of 9.35mm/s.

3.2 Analysis of smartphones AF

Within this environment, we analyzed the performance of three representative
consumer smartphones (Apple iPhone 7, Google Pixel, Samsung Galaxy S6) to
observe their behaviour under different scenarios. The cameras are positioned
such that their fields of view are as similar as possible. The frame rate for video
capture is fixed at 30 frames/sec. Given the different optical systems and image
formats among the cameras, there are slight differences in the field of view, but
these differences are negligible in terms of their effect on the AF outcomes.

We experimented with a wide range of scene configurations, such as an object
with a figurine with a human face, textured backgrounds, and various moving
objects. As previously illustrated in Figure 1, we observed that the AF behaviors
differ between phones. For example, in one experiment we set up a textured
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Fig. 3: Example of the temporal image sequence for scene 3. Focal stacks consist
of I1i , ..., I

50
i images for each time point ti.

background and a textured object to move horizontally from left to right with
respect to the camera. We observed that for the Google Pixel and Samsung
Galaxy S6 Edge, the foreground object becomes in focus only when it is inside
the center of the image; otherwise it is out of focus. For the same setup captured
by an Apple iPhone 7, however, the foreground object is in focus most of the
time regardless of its position from the center. In another experiment with a
figurine with a human face, we observed that the three smartphones detected
the face in a video, but only Apple iPhone 7 focused on the face region.

3.3 Scene and image sequence capture

Based on our observations, we settled on 10 representative scenes that are cat-
egorized into three types: (1) scenes containing no face (NF), (2) scenes with a
face in the foreground (FF), and (3) scenes with faces in the background (FB).
For each of these scenes, we allowed different arrangements in terms of textured
backgrounds, whether the camera moves, and how many types of objects in the
scene change their directions (referred to as motion switches). Table 1 summa-
rizes this information. Figure 2 shows the physical setup of several of the scenes.

For each of these 10 scenes, we captured the following data. First, each scene
was imaged with the three smartphone cameras. This video capture helps to
establish high-level AF objectives used on phones and determines the approxi-
mate video length needed to capture the overall scene dynamics. The duration of
these videos is provided in Table 1. Due to limits on the supplemental materials,
representative down-sampled versions of the videos are provided.

Next, we captured temporal focal stacks for each of these scenes. We refer
to these as image sequences to distinguish them from the actual videos. To
capture each image sequence, we replicated the video capture in a stop-motion
manner. Specifically, the objects in the scene are moved in motion increments
of 3.87mm between consecutive time points. We used the Samsung Galaxy S6
Edge to perform the image capture using a custom Android app that fixed all
camera settings (e.g., ISO, white balance, shutter speed). Our app also controlled
the lens position, such that for each time point ti, we captured a focal stack of
50 images where the camera lens is moved in linear steps from its minimum to
maximum position. The last row in Table 1 shows also the number of time points

for each captured temporal image sequence. In this paper we use the term time
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Global (GB) 9 focus points (9 FP) 51 focus points (51 FP) Face region (FR)

Fig. 4: Our four AF objectives. The region bounded in a green box is a candidate
for ROI(s).

point to denote time slot in our stop-motion data. We also use the term frame

to denote real-time video frame, either from a real video or an output produced
by our AF platform.

Figure 3 shows an example of scene 2 with 50 time points. Each time point

ti in Figure 3 has a focal stack of 50 images that are denoted as Iji , j = 1, ..., 50,
where i denotes time point and j indexes the focal stack image associated to a
specific lens position.

4 AF platform and API

We begin with a short discussion on how our platform emulates PDAF and
CDAF as these are the low-level algorithms of any AF system. This is followed
by a discussion on the overall platform and associated API.

4.1 PDAF/CDAF emulation

The CDAF and PDAF process can be divided into three main steps: first, de-
termine a desired region of interest (ROI) based on the high-level AF objective;
second, measure the sharpness or phase of the ROI selected; third, adjust the
lens position to maximize the focus.

Based on the observed behaviour of the captured video from our three smart-
phone cameras on the 10 scenes, we determine four high-level AF objectives in
terms of ROI as follows: (1) global ROI targeting the whole image; (2) a layout
of 9 focus points with 9 ROIs; (3) a layout of 51 focus points with 51 ROIs
(similar to the global ROI); (4) and a face region ROI where the largest region
of detected faces is set as the ROI. Figure 4 shows the ROI(s) for each objective
bounded in a green box.

Our AF platform provides the flexibility to manually specify the ROI; how-
ever, based on the above four objectives, we provide these as presets that the
user can select. To facilitate the face region objective for our dataset, we man-
ually labeled the face regions to avoid any face detection algorithm mistakes.
Our platform allows retrieval of the labeled face region via an API call; however,
when the pre-defined face region is selected, this call is automatically performed
and the ROI set to the face region. Regarding the sharpness measure for the
CDAF, we provide two gradient based filters–namely, Sobel and Prewitt opera-
tors. Based on Loren’s findings in [7], the Sobel and Prewitt filters are the most
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API call Description Return values Clock cycles

setScene(int sc) Select one of the 10 scenes, sc= 0, ..., 9 null 0

setRegion(int [] reg)

Set the region either by selecting one of the predefined

null 0
regions: Global (reg=[0]), 9 Focus Points (reg=[1]),
51 Focus Points (reg=[2]) or Face Region (reg=[3]),

or by passing an array of size r×4 where r is the number
of regions. Each region has offset (x,y), width, and height.

setSharpMeasure(int sh)
Select one of the two predefined sharpness measures:

null 0
Sobel (sh=0) or Prewitt (sh=1).

setKernelSize(int ker)
Select one of the three predefined kernel sizes: 3 (ker=0),

null 0
5 (ker=1) or 7 (ker=2).

recordScript() Start recording the subsequent API calls in a script. null 0

endScript() Stop recording the subsequent API calls in a script. null 0

callPD(int ρ)
Compute phase difference and return approximate

[Cloc, Cglob, I
j
Cglob

, j, p] 1
optimal lens position p± ρ.

callCD(function fun)

Allow the user to pass custom contrast detection AF

[Cloc, Cglob, I
j
Cglob

, j,score]

1 (if default)
implementation as a function. Default Sobel/Prewitt with or defined

kernel size as set by user. fun is a function written in by user
Python format.

moveLensForward() Move the lens a step forward. [Cloc, Cglob, I
j
Cglob

, j] 1

moveLensBackward() Move the lens a step backward. [Cloc, Cglob, I
j
Cglob

, j] 1

noOp()
No operation. No lens movements. Used to increment Cloc [Cloc, Cglob, I

j
Cglob

] 1
in order to move in global time Cglob.

getFaceRegion()

Detect face(s) and return face region(s) int face[] if exists.

[Cloc, Cglob, I
j
Cglob

, face[]] 0
face[] is an array of size m×4 where m is the number of

face regions. Each face region has offset (x,y),
width, and height.

Table 2: API calls with their parameters and return values. Each API call incurs
a cost related to the number of internal clock cycles. Cloc current clock cycle,
Cglob current time point, IjCglob

current image at current Cglob and current lens
position j, p optimal lens position, and score is the score of gradient energy
(default or defined by user). See supplemental materials for more API details.

accurate among other sharpness measure methods. The size of these filters can
also be controlled.

4.2 AF platform and API calls

Our AF API is designed to emulate AF in smartphones. The platform and API
impose constraints on lens motion timing with respect to scene motion and
video frame rate. As such, our API and platform have a local and global virtual
clock. The local clock, denoted as Cloc, emulates the real-time internal clock on
the smartphone, whereas the global clock, Cglob, emulates the real-world timing
(scene dynamics).
Platform timing Since the Samsung Galaxy S6 was used to capture our dataset,
we measured its performance to establish the mapping between the local and
global clocks. Specifically, we measured how long it took the camera to respond
to a scene change at a different focal positioning by sweeping the lens to this
position while capturing video. To do this, we set up two objects: a textured
flat background and textured flat foreground; both are parallel to the camera
plane at different depth layers (one close and one far). The background object
appears at the beginning of video capturing and is in focus; then, after a short
delay we immediately display the foreground object closer to the camera, which
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causes the AF system to move the focus from background to foreground. Later,
we decompose the captured video into frames and count how many frames it
required to move from background to foreground. For the exact same scene sce-
nario, we collected a full focal stack (50 images), previously discussed. To obtain
how many steps the lens moved, we use the focal stack to compute at which lens
positions the background and foreground objects are in focus.

Once we obtain the number of lens steps and number of frames required,
we can compute from lens step to frame unit (33.33 msec). Therefore, we esti-
mated the Samsung Galaxy S6 Edge requires 42 msec to move the lens one step
(including image capturing and AF processing).

The time required for the translating stage motor to move one step (3.87mm)
is 414 msec. Recall that a single translating stage motor step in real time is
equivalent to a discrete time point in our stop-motion setup. Therefore, the
number of steps s allowed for the lens to move in one time point is equal to
414/42 ≈ 9.86 steps. Based on this approximate calculation, we fix s to 10
steps and we relate s to the local clock Cloc (one lens movement costs one clock
cycle). Accordingly, the corresponding global clock Cglob increments every 10
clock cycles. Thus our relationship is: 10 Cloc advances Cglob by 1.

API Our API is based on Python and provides 12 primitive calls as described
in Table 2. See supplemental materials for more details.

The recordScript() and endScript() API calls are used to save the API
calls and load them later for user algorithm playback purposes. These calls are
also useful for capturing metadata about the performance of the algorithm–for
example, lens position, API call made at each clock cycle, and ROI selected.

Our callPD(int ρ) API call is used to emulate the PDAF available on most
high-end smartphone cameras. The real PDAF routine on a camera is able to find
the approximate lens position for a desired ROI close to the optimal focal frame
in the focal stack within a single processing pass of the low-level raw image.
On real cameras, the PDAF result is obtained at a hardware level based on a
proprietary layout of dual-pixel diodes placed on the sensor. We were not able to
access this data and provided it as part of our focal stack dataset. As a result, we
instead emulate the result of the phase difference by running CDAF targeted to
the specified ROI on the whole focal stack at the current time-point ti defined by
the global clock Cglob. As mentioned previously, real camera PDAF is performed
first to move the lens closer to the optimal focusing position; afterwards CDAF is
typically performed to refine the lens position. To mimic this near optimality, we
apply an inaccuracy tolerance ρ on the optimal focusing position obtained. This
inaccuracy tolerance allows the estimated lens position to lie randomly around
the optimal by ±[0, ρ] and is a parameter that can be passed to the API.

4.3 Example implementation

Alg. 1 provides simple pseudo-code based on our API to demonstrate how an
AF algorithm based on the global objective for Scene 4 can be implemented.
Real Python examples and script recording and video outputs are provided in
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Algorithm 1 Example of a Global ROI Objective using Optimal PDAF

1: Start API
2: setScene(Scene4)

3: setRegion(Global)

4: recordScript() //Create a script and start recording API calls
5: while not end of time points do

6: if time point ti incremented then

7: Cloc, Cglob, I
j
i , j, p←callPD(0)

8: else if optimal lens position p > current lens position j then

9: Cloc, Cglob, I
j
i , j ←moveLensForward()

10: else if optimal lens position p < current lens position j then

11: Cloc, Cglob, I
j
i , j ←moveLensBackward()

12: else if optimal lens position p == current lens position j then

13: Cloc, Cglob, I
j
i ←noOp()

14: end if

15: V ideo← I
j
i //Write the acquired image into a video

16: end while

17: endScript() //Close and summarize the script(e.g., # of lens movements)

the supplemental materials. In this simple example, we set the ρ to zero, which
results in callPD() calls returning the optimal lens position.

Based on our implementation in Alg. 1, the time point ti will be incremented
by API every 10 clock cycles (as discussed before in Section 4.2). At each clock
cycle API returns an image, which means we will get 10 images at each ti. The
total number of images returned by the API for a specific scene thus is equal to
10× n where n is the scene size in time points. To generate an output video for
a scene, we write each image at each clock cycle out to a video object. Running
Alg. 1 will return metadata about the performance of the global objective for
Scene 4. In Figure 5 we show the lens position over local time (clock cycles)
for the global objective (GB) in the dark blue solid line. From Figure 5 we can
analyze the lens movements over time, where the GB has fewer lens movements
and less oscillation. Figure 5 also shows the lens position over time for other
objectives for Scene 4.

5 User study on AF preference

We conducted a user study to determine if there was any particular preference
for the different AF methods. As shown in Figure 5, the AF platform gave us
the opportunity to track exact lens movement for each method. Lens motion was
treated as a potential factor.
Preparation For this study we defined scene number, objective, and lens motion
as our independent variables; the user preference is our dependent variable. We
adopted a force-choice paired comparison approach that requires each participant
in the study to choose a preferred video from a pair of videos. Both videos in a
given pair are of the same scene but have different AF objectives. We used all
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Fig. 5: This figure shows the lens position for each clock cycle for Scene 4 for
each objective test. Total number of lens movements is shown in parentheses.
An out-of-focus objective (OF) is included that does not move the lens over the
entire sequence. For Scene 4, the 51 focus points (51 FP) objective oscillates the
most. For the face region (FR) objective, the face did not enter the scene until
clock cycle 70–the 9 focus points (9 FP) are applied by default when the face is
not present. Global (GB) and 9 FP objectives tend to oscillate less than others
with fewer lens movements.

10 scenes from our dataset for the study. There are six scenes with faces and
four without. For the scenes with faces, there are four AF objectives–namely,
global, 9 focus point, 51 focus point, and face region. The scenes without faces
have only the first three AF objectives.

We generated output videos through our API and using our dataset and
modifications of Alg. 1 for each AF objective on all scenes (example video frames
from Scene 1 are shown in Figure 6). Due to limits on the supplemental materials,
representative down-sampled versions of the user study videos are provided.
Additionally, for each scene, we have generated an out-of-focus video, where all
scene elements are out of focus. Those out-of-focus videos are generated through
our API by fixing the lens to the maximum position and calling noOp() till
the end-of-scene time points. However, for Scene 6, we omitted this objective
because there is no lens position that makes all scene elements out-of-focus.
Therefore, there are five scenes in total with five AF objectives (with the out-
of-focus objective added), and another five scenes with only four AF objectives.
The total number of paired comparisons is 5×

(

5

2

)

+ 5×
(

4

2

)

= 80.

ProcedureWe collected 10 opinions for each video pair from 80 participants (34
females and 46 males) ranging in age from 18 to 50. Each subject was shown 10
video pairs selected in random order. We designed a simple graphical user inter-
face that allows the user to view video pairs, one pair after the other, and easily
examine the difference in AF behavior. The interface allows the participants to
watch the two videos in the current pair any number of times before they make a
selection and proceed to the next pair. A snapshot of our interface is provided in
the supplementary material. The survey takes on average three to five minutes
to complete. The experiments were carried out indoors with calibrated monitors
and controlled lighting.

Outcomes Recall our scenes are categorized as Cat. 1: scenes with no face (NF),
Cat. 2: scenes with a prominent face in the foreground (FF), and Cat. 3: scenes
in which the face is in the background (FB). For each category, we aggregated
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Fig. 6: Example output video frames generated by our AF platform using dif-
ferent objectives applied on Scene 1 over time. See supplemental materials for
additional results for other scenes.

user votes into an overall score that represents user preference by counting the
number of times each AF objective is preferred over any other objective. These
results are presented in Figures 7 and 8. In Figure 7, in the first column, we
show average user preference per AF objective for each category (i.e., aggregated
over scenes). We can see that for NF videos, the global (GB) AF objective is
the most preferred. For the FF videos, the face region (FR) AF objective is the
most preferred. For the FB videos, there is no strong preference among the three
objectives GB, 51 focus points (51 FP), and FR, but the most preferred is GB
followed by FR. Additionally, we calculated the 95% confidence intervals for these
results as represented by the error bars, which indicate the statistical significance
of the results. Furthermore, the plots on the right of Figure 7 represent the user
preference per objective for individual scenes (lower plots) with a corresponding
number of lens movements (upper plots with grey bars) for each of the three
categories. The individual scene plots also confirm the observations from the
aggregate plots for all cases except Scene 9.

To examine the correlation between user preference and the number of lens
movements for each category, we plotted the user preference vs. lens movements
for each category, as shown in Figure 8. We see that there is a clear correlation
between user preference and lens movements, suggesting that users tend to prefer
the objectives with fewer lens movements. This is indicated by the negative
correlation coefficients shown on the plots.

For the second category that contains a prominent face in the foreground, the
results suggest that users prefer the face AF that locks onto the face even if more
motion of the lens is required to achieve this objective. This voting pattern can be
seen in the second row in Figure 7, where the FR AF objective receives a higher
percentage of votes than the GB AF, which has the least amount of lens motion.
Also note that the 51 focus points (51 FP) objective has the highest amount
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Fig. 7: User preference of AF objectives for three scene meta-categories: no face
(NF), face in foreground (FF), and face in background (FB) for AF objectives:
global (GB), 9 focus points (9 FP), 51 focus points (51 FP), face region (FR),
and out-of-focus (OF). The left column shows the average user preference. The
small plots on the right show user preference (lower plots) and lens movements
(upper plots in grey) for individual scenes.

of lens motion and is the least preferred. In the third category that contains
a face in the background, users do not seem to have any strong preference, as
seen by the near-equal distribution of votes across 51 FP, GB, and FR, all of
which interestingly have roughly the same amount of lens motion (third row in
Figure 7). It is also important to note that in agreement with our findings for
the first two categories, the objective with the highest amount of lens movement,
which in this case is the 9 focus points (9 FP) objective, is the least preferred.

The out-of-focus (OF) objective is preferred the least across all three cat-
egories although it has the least amount of lens motion. This agrees with the
common wisdom that at least a part of the scene has to be in focus, and simply
minimizing the amount of lens motion does not induce a higher preference.
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Fig. 8: The relationship between user preference and number of lens movements for
AF objectives for the three scene meta-categories. Left: no face (NF). Middle: face in
foreground (FF). Right: face in background (FB).

6 Discussion and summary

This paper has developed a new software platform and dataset focused on
autofocus for video capture with smartphone cameras. To this end, we con-
structed a hardware setup that allows dynamic scenes to be accurately “re-
played”. Using this environment, we analyzed representative smartphone cam-
eras’ AF behaviour under 10 different scenes with various motions, backgrounds,
and objects (including an object serving as a proxy for a human face). We also
captured these scenes with discrete time points, producing a 4D temporal fo-
cal stack dataset for use in AF research. The overall dataset consists of 33,000
smartphone camera images and will be made publicly available. We also devel-
oped an AF platform that allows the development of AF algorithms within the
content of a working camera system. API calls allow algorithms to simulate lens
motion, image access, and low-level functionality, such as phase and contrast
detection. This platform also restricts an AF algorithm to operate within a real
camera environment, where lens motion that is directly tied to the systems clock
cycle and scene motion is required to access different images in the focal stack.

From our analysis of the cameras’ AF behaviour we examined four high-level
AF objectives–namely, global, 9 focus points, 51 focus points, and face region.
Using our AF platform, we implemented these high-level AF objectives to pro-
duce several video outputs that were used in a user study. Because our AF
platform allowed accurate analysis of the underlying AF algorithms, we were
able to determine that user preference is correlated higher to the overall lens
motion than the actual scene objective used. For scenes with faces, focusing on
the face (when sufficiently large) took priority, followed by the amount of lens
motion. While these findings are somewhat intuitive (e.g., no one likes a scene
with too much lens wobble), as far as we are aware, this is the first study to
confirm these preferences in a controlled manner. We believe having access to
our temporal focal stack dataset and AF platform will be a welcomed resource
for the research community.
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