This ECCV 2018 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ECCV 2018
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccy

Interpretable Basis Decomposition
for Visual Explanation

Bolei Zhou'*, Yiyou Sun?*, David Bau'*, Antonio Torralba!

IMIT CSAIL ?Harvard
{bzhou, davidbau, torralba}@csail .mit.edu, sunyiyou@seas.harvard.edu
* indicates equal contribution

Abstract. Explanations of the decisions made by a deep neural network
are important for human end-users to be able to understand and diag-
nose the trustworthiness of the system. Current neural networks used
for visual recognition are generally used as black boxes that do not
provide any human interpretable justification for a prediction. In this
work we propose a new framework called Interpretable Basis Decompo-
sition for providing visual explanations for classification networks. By
decomposing the neural activations of the input image into semantically
interpretable components pre-trained from a large concept corpus, the
proposed framework is able to disentangle the evidence encoded in the
activation feature vector, and quantify the contribution of each piece of
evidence to the final prediction. We apply our framework for providing
explanations to several popular networks for visual recognition, and show
it is able to explain the predictions given by the networks in a human-
interpretable way. The human interpretability of the visual explanations
provided by our framework and other recent explanation methods is eval-
uated through Amazon Mechanical Turk, showing that our framework
generates more faithful and interpretable explanations®.

1 Introduction

As deep networks continue to prove their capabilities on an expanding set of ap-
plications in visual recognition such as object classification [19], scene recognition
[29], image captioning [24], and visual question answering [1], it is increasingly
important not only for a network to make accurate predictions, but also to be
able to explain why the network makes each prediction.

A good explanation of a deep network should play two roles: first, it should
be a faithful representation of the operation of the network; and second, it should
be simple and interpretable enough for a human to understand. There are two
approaches for creating human-understandable explanations for the internals of
a deep network. One is to identify the evidence that a network uses to make a
specific decision by creating a heatmap that indicates which portions of an input
are most salient to the decision [28,2,20]. Such heatmaps can be created using
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a variety of techniques and can be applied to identify the most salient parts of
images and training sets. A second approach is to identify the purpose of the
internal representations of a network by identifying the concepts that each part
of the network detects [3,27,7]. Such concept dictionaries can be created by
matching network units to a broad concept data set, by generating or sampling
example inputs that reveal the sensitivity of a unit, or by training parts of the
network to solve interpretable subproblems.

In this paper we describe a framework called Interpretable Basis Decomposi-
tion (IBD), for bringing these two approaches together to generate explanations
for visual recognition. The framework is able to decompose the evidence for
a prediction for image classification into semantically interpretable components,
each with an identified purpose, a heatmap, and a ranked contribution, as shown
in Fig. 1. In addition to showing where a network looks, we show which concepts
a network is responding to at each part of the input image.
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Fig. 1. Interpretable Basis Decomposition provides an explanation for a prediction by
decomposing the decision into the components of interpretable basis. Top contributing
components are shown with a label, contribution, and heatmap for each term.

Our framework is based on the insight that good explanations depend on
context. For example, the concepts to explain what makes up a ‘living room’ are
different from the concepts to explain an ‘airport’. A overstuffed pillow is not
an airliner, nor vice-versa. We formalize the idea of a salient set of concepts as a
choice of a interpretable basis in the feature space, and describe how to construct
a context-specific concept basis as the solution to a least-squares problem.

Each explanation we describe is both a visualization and a vector decom-
position of a layer’s internal state into interpretable components. As a vector
decomposition, each explanation is faithful to the network, quantifying the con-
tribution of each component and also quantifying any uninterpreted residual.
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The framework also provides explanations that are simple enough for a person
to understand. We conduct human evaluations to show that the explanations
give people accurate insights about the accuracy of a network.

We summarize our contributions as follows: 1) A new framework called Inter-
pretable Basis Decomposition to provide semantic explanations with labels and
heatmaps for neural decision making. 2) Application of the proposed framework
on a wide range of network architectures, showing its general applicability. 3)
Human evaluations to demonstrate that the explanations are understandable to
people, outperforming previous heatmap and unit-based explanation methods.

1.1 Related Work

Visualizing neural networks. A number of techniques have been developed
to visualize the internal representations of convolutional neural networks. The
behavior of a CNN can be visualized by sampling image patches that maximize
activation of hidden units [25], and by backpropagation to identify or generate
salient image features [16,21]. An image generation network can be trained to
invert the deep features by synthesizing the input images [5]. The semantics of vi-
sualized units can be annotated manually [27] or automatically [3] by measuring
alignment between unit activations and a predefined dictionary of concepts.

Explaining neural network decisions. Explanations of individual net-
work decisions have been explored by generating informative heatmaps such as
CAM [28] and grad-CAM [20], or through back-propagation conditioned on the
final prediction [21] and layer-wise relevance propagation [2]. The attribution of
each channel to the final prediction has been studied [18]. Captioning methods
have been used to generate sentence explanations for a fine-grained classification
task [9]. The limitation of the heatmap-based explanation methods is that the
generated heatmaps are qualitative and not informative enough to tell which
concepts have been detected, while the sentence-based explanation methods re-
quire an ad-hoc corpus of sentence description in order to train the captioning
models. Our work is built upon previous work interpreting the semantics of units
[3] and on heatmaps conditioned on the final prediction [20, 28]. Rather than us-
ing the semantics of activated units to build explanations as in [26], we learn a
set of interpretable vectors in the feature space and decompose the representa-
tion in terms of these vectors. We will show that the proposed method is able
to generate faithful explanations which are more informative than the previous
heatmap-based and unit-activation methods.

Component analysis. Understanding an input signal by decomposing it
into components is an old idea. Principal Component Analysis [12] and Inde-
pendent Component Analysis [11] have been widely used to disentangle a low-
dimensional basis from high-dimensional data. Other decomposition methods
such as Bilinear models [23] and Isomap [22] are also used to discover meaning-
ful subspaces and structure in the data. Our work is inspired by previous work on
component decomposition. Rather than learning the components unsupervised,
we learn the set of components from a fully annotated dataset so that we have a
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ground-truth label for each component. After projecting, the labeled components
provide interpretations, forming human-understandable explanations.

Concurrent work [14] proposes examining the behavior of representations in
the direction of a set of semantic concept vectors learned from a pre-defined
dataset. Those Concept Activation Vectors play a similar role as our Inter-
pretable Basis Vectors, but while that work focuses on using a single feature
at a time for retrieval and scoring of samples, our work uses basis sets of vectors
to create explanations and decomposed heatmaps for decisions.

2 Framework for Interpretable Basis Decomposition

The goal of Interpretable Basis Decomposition is to decode and explain every bit
of information from the activation feature vector in a neural network’s penul-
timate layer. Previous work has shown that it is possible to roughly invert a
feature layer to recover an approximation to the original input image using a
trained feature inversion network [5]. Instead of recovering the input image, our
goal is to decode the meaningful nameable components from the feature vector
so that we can build an explanation of the final prediction.

We will describe how we decompose feature vectors in three steps. We begin
by describing a way to decompose an output class k into a set of interpretable
components c. In our decomposition, both the class and the concepts are repre-
sented as vectors wy and ¢, that correspond to linear classifiers in the feature
space, and the decomposition is expressed as an optimal choice of basis for wy.
The result of this step is a set of elementary concepts relevant to each class.

Next, we describe how to derive vectors g. corresponding to a broad dictio-
nary of elementary interpretable concepts c. Each ¢, is learned by training a
linear segmentation model to locate the concept within the feature space.

Finally, we describe how to create explanations of instance decisions. This
is done by projecting the feature vector into the learned interpretable basis and
measuring the contribution of each interpretable component. An explanation
consists of a list of concepts that contribute most to the final score, together
with a heatmap for each concept that shows where the contributions arise for
the final prediction. The framework is illustrated in Fig. 2.

2.1 Defining an Interpretable Basis

Explaining a layer can be done by choosing an interpretable basis for the layer’s
input representation. To see why, set f(z) € RX as a deep net with K output
dimensions, considered without the final softmax. We are interested in explaining
properties of x which determine the score fi(x) for a particular class k < K: for
example, we may wish to know if a concept ¢ such as crowds of people tends to
cause the input to be classified as an output class k such as airports.

We can express our question in terms of an intermediate representation. Write
f(z) = h(g(x)) where h(a) is the top of the network and a = g(x) € R is a
point in the representation space of the layer of interest. Then to investigate the
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Fig. 2. Illustration of Interpretable Basis Decomposition. The class weight vector wy
is decomposed to a set of interpretable basis vectors Y sc;qc;, each corresponding
to a labeled concept c¢; as well as a projection qu A that reveals a heatmap of the
activations. An explanation of the prediction k consists of the concept labels ¢; and the
corresponding heatmaps for the most significant terms in the decomposition of w? a.
For this particular example, wall, sofa, table (and some others are not shown) are labels
of the top contributing basis elements that make up the prediction of living room.

properties of x that determine fi(x), we can ask about the properties of the
intermediate representation a = g(z) that determine hy(a).

Let us focus on the simple case where a = g(x) is the output of the second-
to-last layer and h(a) is a simple linear operation done by the last layer. Then hy
is a linear function that scores a according to the angle between a and wy, € R”:

h(a) = WMq 4 b (1)

hi(a) = wia + by (2)

Not all directions in the representation space R are equally interpretable. Sup-
pose we have a set of directions g., € R that each correspond to elementary
interpretable concepts ¢; that are relevant to class k but easier to understand

than k itself. Then we can explain w; by decomposing it into a weighted sum of
interpretable components ¢., as follows.

Wi = Sciqe; T+ Se,Ge, (3)

Unless wy, lies exactly in the space spanned by the {q.,}, there will be some
residual error in the decomposition. Gathering the ¢, into columns of a matrix
C, we can recognize that minimizing this error is a familiar least-squares problem:

Find s., to minimize ||r|| where wg = $¢,qe, + -+ - + S¢, qe, + 7 (4)
=Cs+r (5)

The optimal s is given by s = CTw,, where CT is the pseudoinverse of C.
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When interpreting the decomposition of wy, negations of concepts are not as
understandable as positive concepts, so we seek decompositions for which each
coefficient s., > 0 is positive. Furthermore, we seek decompositions with a small
number of concepts.

We build the basis g., in a greedy fashion, as follows. Suppose we have already
chosen a set of columns C' = [ge, |- |ge,], and the residual error is in (4) is
€ = ||wg — Cs||. Then we can reduce the residual by adding an (n 4+ 1)th concept
to reduce error. The best such concept is the one that results in the minimum
residual while keeping the coefficients positive:

argmin min ||wg — [C|gcs]]| (6)
cec  $:5:>0
where [Clg.] indicates the matrix that adds the vector ¢, for the candidate
concept ¢ to the columns of C.

2.2 Learning the Interpretable Basis from Annotations

For explaining an image classification task, we build the universe of candidate
concepts C using the Broden dataset [3]. Broden includes pixel-level segmenta-
tions for a broad range of both high-level visual concepts such as objects and
parts, as well as low-level concepts such as colors and materials. For each candi-
date concept ¢ in Broden, we compute an embedding ¢, € C C R as follows.

Since Broden provides pixel-level segmentations of every concept, we train
a logistic binary classifier h.(a) = sigmoid(wla + b.) to detect the presence of
concept c. Training is done on a mix of images balancing ¢ present or absent at the
center, and hard negative mining is used to select informative negative examples
during the training progress; the training procedure is detailed in Sec. 3.1. The
learned w, captures the features relevant to class ¢, but it is scaled in a way that
is sensitive to the training conditions for c¢. To eliminate this arbitrary scaling,
we standardize ¢, as the normalized vector ¢. = (w. — W.)/||w. — We||.

2.3 Explaining a Prediction via Interpretable Basis Decomposition

The decomposition of any class weight vector wy, into interpretable components
C) C C C RP allows us to decompose the scoring of activations a into compo-
nents of Cf in exactly the same way as we decompose wy, itself. This decompo-
sition will provide an interpretable explanation of the classification.

Furthermore, if we include define a larger basis C} D Cj that adds the
residual vector r = wy — Cys, we can say something stronger: projecting a into
the basis of C}; captures the entire linear relationship described by the network’s
final layer score hy(a) for class k.

hi(a) = wia+ by, (7
= (Cis)"a+ by (8)
:slchlaJr'~+5iqga+«~+anaa+rTa +by, 9)

——

contribution of concept ¢; residual contribution
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Thus we can decompose the score into contributions from each concept, and
we can rank each concept according to its contribution. When the activation
a = pool(A) is derived by global average pooling of a convolutional layer A, we
can commute the dot product inside the pooling operation to obtain a picture
that localizes the contribution of concept c;.

siqga = slqz: pool(A4) (10)
= pool(s; qCTiA) (11)
——

heatmap for concept c¢;

The explanation we seek consists of the list of concepts ¢; with the largest
contributions to hk(a), along with the heatmaps qz;A for each concept. The IBD
heatmaps qu are similar to the CAM heatmap w;" A and can be used to recon-
struct the CAM heatmap if they are all summed. However, instead of summa-
rizing the locations contributing to a classification all at once, the interpretable
basis decomposition separates the explanation into component heatmaps, each
corresponding to a single concept that contributes to the decision.

Decomposing gradients for GradCAM: Grad-CAM is an extension of
CAM [28] to generate heatmap for networks with more than one final noncon-
volutional layers. Starting with the final convolutional featuremap a = g(z),
the Grad-CAM heatmap is formed by multiplying this activation by the pooled
gradient of the higher layers h(a) with respect class k.

wi(a) = %szahk(a) (12)

Here the vector wy(a) plays the same role as the constant vector wy in CAM:
to create an interpretable basis decomposition, wg(a) can be decomposed as
described in Eqgs. 4-6 to create a componentwise decomposition of the Grad-
CAM heatmap. Since wg(a) is a function of the input, each input will have its
own interpretable basis.

3 Experiments

In this section, we describe how we learn an interpretable basis from an annotated
dataset. Then we will show that the concepts of the interpretable basis that
are associated with each prediction class of the networks sheds lights on the
abstractions learned by each network. After that we use the interpretable basis
decomposition to build explanations for the predictions given by the popular
network architectures: AlexNet [15], VGG [13], ResNet (18 and 50 layers) [8],
each trained scratch on ImageNet [4] and Places365 [29]. Finally we evaluate the
fidelity of the explanations given by our method through Amazon Mechanical
Turk and compare with other visual explanation generation methods.
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3.1 Interpretable Basis Learned from Broden

We derive an interpretable basis from the fully annotated image dataset Broden
[26]. Because our focus is to explain high-level features of the neural networks in
terms of human interpretable concepts, we take a subset of the Broden dataset
consisting of object and part concepts. The annotations of the objects and parts
in Broden dataset originally come from the datasets ADE20K [30], Pascal Con-
text [17], and Pascal Parts [6]. We filter out the concepts with fewer than 10
image samples, resulting to 660 concepts from 30K images used for training and
testing.

For each concept in the Broden dataset, we learn a logistic binary classi-
fier. The input of the classifier is a feature vector a(*/) € RP in activation
A € RPXHXW “and the output is the prediction of the probability of the con-
cept appearing at (i,7) € (range(H),range(W)). Our ground truth labels for
the segmentations are obtained by downsampling the original concept masks to
H x W size using nearest neighbor. Note that Broden provides multi-labeled seg-
mentations, and there are often several concepts present in each downsampled
pixel. Therefore it is appropriate for each concept classifier to be trained inde-
pendent of each other. Because the number of positive samples and the number
of negative samples for some concepts are highly unbalanced, we resample the
training set to keep the ratio of positive and negative examples of each class
fixed at 1 : 20 and use five rounds of hard negative mining.

We evaluate the accuracy of the deep features learned from several networks
as shown in Table 1. All models are evaluated with mAP on a fixed validation
set of Broden dataset.

model AlexNet VGGI16 Resnet18 Resnet50
mAP 0.625 0.691 0.784 0.804

Table 1. The mAP of the learned concept classifiers for the object and part concepts
in the Broden dataset. The features used are the activations at the final convolutional
layer of the network trained from scratch on Places365.

3.2 Explaining Classification Decision Boundaries

Interpretable Basis Decomposition assigns a basis of interpretable concepts for
each output class. This basis can be seen as a set of compositional rules between
the output classes and the elementary concepts in the Broden datasets. Different
network learns a different set of such semantic rules for a prediction, thus by
directly examining the interpretable basis decomposition of a network we can
gain insight about the decision boundaries learned by each network for each
class.
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Fig. 3. Visualizing how different networks compose the final prediction classes using
the Broden concepts. The left labels in each graph show the classes of Places365 and
the right labels are the concepts of Broden. The thickness of each link between a class
and a concept indicates the magnitude of the coefficient s.;.

Specifically, our method decomposes each weight vector wy of class k in the
last layer? as the sum wy, = Sc1qe; + 4 Sc,qe,, + 1, where g., represents the
embedding vector for concept ¢; and s, is the coefficient indicating its contribu-
tion to the overall class k. This decomposition indicates a relationship between
the output class k and the concept ¢; described by the coeflicient s.,. In Fig. 3,
we visualize a subset of Places365 classes £ and how they are decomposed into
Broden concepts ¢; by different networks. The left column of the figure is the
list of Places365 classes to be decomposed. The right column shows the related
concepts from the Broden dataset. The thicknesses of the arcs between classes
and concepts are drawn to show the magnitude of the coeflicients s.,. The larger
Sc;, the more important concept ¢; is to the prediction of class k.

In Fig. 3.(a), it can be seen how a single network composes concepts to con-
stitute a variety of different prediction classes. Note that all the classes shown
in (a) share the same concept “cliff” but differ in the importance given to this
concept, which can be seen as different s.,. Fig. 3.(b), shows the different com-
positional rules that different networks use to make the same prediction for a
class. For example, in the prediction class “shoe shop”, all networks agree that
“shoe” is a key element that contributes to this prediction, while they disagree
on other elements. VGG16 treats “boot” and “price tag” as important indica-
tors of a “shoe shop,” while and AlexNet decomposes “shoe shop” into different
concepts such as “glass” and “check-in-desk.”

2 For this experiment, we replace the fc layers in AlexNet and VGG16 with a GAP
layer and retrain them, similar to [28]
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3.3 Explaining Image Predictions

Given the interpretable basis decomposition wy = s¢,qc, + -+ + 8¢, ¢c,, + 7, the
instance prediction result w,{a is decomposed as w,::a = sclq:ﬂa—i—- S, ana+
rTa where each term s, qz;a can be regarded as the contribution of concept i to
the final prediction. We rank the contribution scores and use the concept labels
of the top contributed basis as an explanation for the prediction. Each term also
corresponds to a contribution to the CAM or Grad-CAM salience heatmap.

Fig. 4 shows qualitative results of visual explanations done by our method.
For each sample, we show the input image, its prediction given by the net-
work, the heatmaps generated by CAM [28] for Resnet18 and Resnetl8, and
the heatmaps generated by Grad-CAM heatmap [20] for AlexNet and VGG166,
and the top 3 contributing interpretable basis components with their labels and
numerical contribution.

In Fig. 4(a), we select three examples from Places365 in which VGG16 and
ResNet18 make the same correct predictions. In two of the examples, the ex-
planations provide evidence that VGG16 may be right for the wrong reasons in
some cases: it matches the airplane concept to contribute to the crosswalk pre-
diction, and it matches the sofa concept to contribute to its market prediction.
In contrast, ResNet18 appears to be sensitive to more relevant concepts.

In Fig. 4(b), we show how our method can provide insight on an inconsistent
prediction. ResNet18 classifies the image in last row as an art school because it
sees features described as hand and paper and drawing, while VGG16 classifies
the image as a cafeteria image because VGG16 it is sensitive to table and chair
and map features. Both networks are incorrect because the table is covered with
playing cards, not drawings or maps, and the correct label is recreation room.

In Fig. 4(c), we show the variations generated by different models for the
same sample.

3.4 Human Evaluation of the Visual Explanations

To measure whether explanations provided by our method are reasonable and
convincing to humans, we ask AMT raters to compare the quality of two dif-
ferent explanations for a prediction. We create explanations of decisions made
by four different models (Resnet50, Resnet18, VGG16, and AlexNet, trained on
Places365) using different explanation methods (Interpretable Basis Decompo-
sition, Network Dissection, CAM and Grad-CAM).

The evaluation interface is shown in Fig. 5. In each comparison task, raters
are shown two scene classification predictions with identical outcomes but with
different explanations. One explanation is identified as Robot A and the other
as Robot B, and raters are asked to decide which robot is more reasonable on a
five-point Likert scale. Written comments about the difference are also collected.
In the interface, heatmaps are represented as simple masks that highlight the
top 20% of pixels in the heatmap; explanations are limited to four heatmaps;
and each heatmap can be labeled with a named concept.
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Fig. 4. Explaining speci c predictions. The rstimage pair in each gro up contains orig-
inal image (left) and single heatmap (right), with the predicte d label and normalized
prediction score in parentheses. Single heatmaps are CAM for Reshet and Grad-CAM
for Alexnet and VGG. This is followed by three heatmaps correspond ing to the three
most signi cant terms in the interpretable basis decompositio n for the prediction. The
percentage contribution of each component to the score is shown (a) Examples where
two networks make the same prediction. (b) Explanations where t wo networks make
di erent predictions. (c) Comparisons of di erent architectures

Which Robot Do You Trust? Robot A says:

Both robots predicted the location living room living room because: 1. door 2. coffee table 3. chair 4. outside arm

Examine their reasons, and answer the question below.

Which robot is more reasonable? v/

more reasonable then Robot B

more reasonabie then Robot B.
ally reasonable. Robot B says:
Robot B seems slightly more reasonable then Robot A.
Robot B seems clearly more reasonable then Robot A living room because: 1. seat base 2. outside arm

Explain your choice: v

Robot B thought it saw a fireplace and 3 tv stand wiere there was none.

4

Fig. 5. Interface for human evaluations. Two di erent explanations of t he same predic-
tion are presented, and human raters are asked to evaluate which ismore reasonable.


















